26 research outputs found
Nutrient Acquisition and the Metabolic Potential of Photoferrotrophic Chlorobi
Anoxygenic photosynthesis evolved prior to oxygenic photosynthesis and harnessed energy from sunlight to support biomass production on the early Earth. Models that consider the availability of electron donors predict that anoxygenic photosynthesis using Fe(II), known as photoferrotrophy, would have supported most global primary production before the proliferation of oxygenic phototrophs at approximately 2.3 billion years ago. These photoferrotrophs have also been implicated in the deposition of banded iron formations, the world’s largest sedimentary iron ore deposits that formed mostly in late Archean and early Proterozoic Eons. In this work we present new data and analyses that illuminate the metabolic capacity of photoferrotrophy in the phylum Chlorobi. Our laboratory growth experiments and biochemical analyses demonstrate that photoferrotrophic Chlorobi are capable of assimilatory sulfate reduction and nitrogen fixation under sulfate and nitrogen limiting conditions, respectively. Furthermore, the evolutionary histories of key enzymes in both sulfur (CysH and CysD) and nitrogen fixation (NifDKH) pathways are convoluted; protein phylogenies, however, suggest that early Chlorobi could have had the capacity to assimilate sulfur and fix nitrogen. We argue, then, that the capacity for photoferrotrophic Chlorobi to acquire these key nutrients enabled them to support primary production and underpin global biogeochemical cycles in the Precambrian
Phylogenetic and structural diversity of aromatically dense pili from environmental metagenomes
This is the peer reviewed version of the following article: Bray, M.S., Wu, J., Padilla, C.C., Stewart, F.J., Fowle, D.A., Henny, C., Simister, R.L., Thompson, K.J., Crowe, S.A. and Glass, J.B. (2020), Phylogenetic and structural diversity of aromatically dense pili from environmental metagenomes. Environmental Microbiology Reports, 12: 49-57. https://doi.org/10.1111/1758-2229.12809, which has been published in final form at https://doi.org/10.1111/1758-2229.12809. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.Electroactive type IV pili, or e-pili, are used by some microbial species for extracellular electron transfer. Recent studies suggest that e-pili may be more phylogenetically and structurally diverse than previously assumed. Here, we used updated aromatic density thresholds (≥9.8% aromatic amino acids, ≤22-aa aromatic gaps and aromatic amino acids at residues 1, 24, 27, 50 and/or 51, and 32 and/or 57) to search for putative e-pilin genes in metagenomes from diverse ecosystems with active microbial metal cycling. Environmental putative e-pilins were diverse in length and phylogeny, and included truncated e-pilins in Geobacter spp., as well as longer putative e-pilins in Fe(II)-oxidizing Betaproteobacteria and Zetaproteobacteria
Rates and Pathways of N2 Production in a Persistently Anoxic Fjord: Saanich Inlet, British Columbia
Marine oxygen minimum zones (OMZs) support 30–50% of global fixed-nitrogen (N) loss but comprise only 7% of total ocean volume. This N-loss is driven by canonical denitrification and anaerobic ammonium oxidation (anammox), and the distribution and activity of these two processes vary greatly in space and time. Factors that regulate N-loss processes are complex, including organic matter availability, oxygen concentrations, and NO2− and NH4+ concentrations. While both denitrification and anammox produce N2, the overall geochemical outcome of these processes are different, as incomplete denitrification, for example, produces N2O, which is a potent greenhouse gas. Information on rates of anammox and denitrification and more detailed ecophysiological knowledge of the microorganisms catalyzing these processes are needed to develop more robust models of N-loss in OMZs. To this end, we conducted monthly incubations with 15N-labeled N during under anoxic conditions and during a deep water renewal cycle in Saanich Inlet, British Columbia, a persistently anoxic fjord. Both denitrification and anammox operated throughout the low oxygen water column with depth integrated rates of anammox and denitrification ranging from 0.15 ± 0.03 to 3.4 ± 0.3 and 0.02 ± 0.006 to 14 ± 2 mmol N2 m−2 d−1, respectively. Most N2 production in Saanich Inlet was driven by denitrification, with high rates developing in response to enhanced substrate supply from deep water renewal. Dynamics in rates of denitrification were linked to shifts in microbial community composition. Notably, periods of intense denitrification were accompanied by blooms in an Arcobacter population against a background community dominated by SUP05 and Marinimicrobia. Rates of N2 production through denitrification and anammox, and their dynamics, were then explored through flux-balance modeling with higher rates of denitrification linked to the physiology of substrate uptake. Overall, both denitrification and anammox operated throughout the year, contributing to an annual N-loss of 2 × 10−3 Tg N2 yr−1, 37% of which we attribute to anammox and 63% to complete denitrification. Extrapolating these rates from Saanich Inlet to all similar coastal inlets in BC (2478 km2), we estimate that these inlets contribute 0.1% to global pelagic N-loss
Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes.
Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14 800 pg/ml (400, 32 400)], compared to those with encephalopathy [1410 pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740 pg/ml (507, 881)] and controls [872 pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19
In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity
Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape differences within local sponge-specific communities remain less understood. On tropical coral reefs, sponge habitats can span from shallow areas to deeper, mesophotic sites. These habitats differ in terms of environmental factors such as light, temperature, and food availability, as well as anthropogenic impact. In order to study the host specificity and potential influence of varying habitats on the sponge microbiota within a local area, four tropical reef sponges, Rhabdastrella globostellata, Callyspongia sp., Rhaphoxya sp., and Acanthella cavernosa, were collected from exposed shallow reef slopes and a deep reef drop-off. Based on 16S rRNA gene pyrosequencing profiles, beta diversity analyses revealed that each sponge species possessed a specific microbiota that was significantly different to those of the other species and exhibited attributes that are characteristic of high- and/or low-microbial-abundance sponges. These findings emphasize the influence of host identity on the associated microbiota. Dominant sponge- and seawater-associated bacterial phyla were Chloroflexi, Cyanobacteria, and Proteobacteria. Comparison of individual sponge taxa and seawater samples between shallow and deep reef sites revealed no significant variation in alpha diversity estimates, while differences in microbial beta diversity (variation in community composition) were significant for Callyspongia sp. sponges and seawater samples. Overall, the sponge-associated microbiota is significantly shaped by host identity across all samples, while the effect of habitat differentiation seems to be less predominant in tropical reef sponges