222 research outputs found

    Distribution of the Fishes of The Great Smoky Mountains National Park

    Get PDF
    Over 200 collections of fishes have been made within the boundaries of the Great Smoky Mountains National Park, revealing a Park ichthyofauna of 74 native and 5 introduced fish species. Abrams Creek, containing the most diverse ichthyofauna in the park, currently contains only 35 of its historical 67 fish species. This loss of species resulted from intentional poisoning of eh creek to improve habitat for rainbow trout and impoundment of the lowest 2.6 miles by Chilhowee Reservoir. Abrams Creek also contains a very unusual ichthyofauna in its upper portion. Several species found above its 25-foot waterfall have not been found below it, and some are rare elsewhere in the Little Tennessee River system. A possible drainage history, supported by both ichthyological and geological data is theorized. Outlets for some of the streams now in the upper Abrams Creek system may have existed toward Little River and Parsons Branch or Tabcat Creek. Possible environmental problems which might be faced by the Park\u27s fishes are discussed. Although the streams in the Park are not subjected to problems such as waste water treatment or agricultural runoff, they are effected by such problems as acid rain and the possibility of global warming

    Carbon Capture and Storage

    Get PDF
    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2 from the point of capture to the storage location, and isolation from the atmosphere by storage in deep underground rock formations. Considering full life-cycle emissions, CCS technology can reduce 65–85% of CO2 emissions from fossil fuel combustion from stationary sources, although greater reductions may be possible if low emission technologies are applied to activities beyond the plant boundary, such as fuel transportation. CCS is applicable to many stationary CO2 sources, including the power generation, refining, building materials, and the industrial sector. The recent emphasis on the use of CCS primarily to reduce emissions from coal-fired electricity production is too narrow a vision for CCS. Interest in CCS is growing rapidly around the world. Over the past decade there has been a remarkable increase in interest and investment in CCS. Whereas a decade ago, there was only one operating CCS project and little industry or government investment in R&D, and no financial incentives to promote CCS. In 2010, numerous projects of various sizes are active, including at least five large-scale full CCS projects. In 2015, it is expected that 15 large-scale, full-chain CCS projects will be running. Governments and industry have committed over USD 26 billion for R&D, scale-up and deployment. The technology for CCS is available today, but significant improvements are needed to support widespread deployment. Technology advances are needed primarily to reduce the cost of capture and increase confidence in storage security. Demonstration projects are needed to address issues of process integration between CO2 capture and product generation, for instance in power, cement and steel production, obtain cost and performance data, and for industry where capture is more mature to gain needed operational experience. Large-scale storage projects in saline aquifers are needed to address issues of site characterization and site selection, capacity assessment, risk management and monitoring. Successful experiences from five ongoing projects demonstrate that, at least on this limited scale, CCS can be safe and effective for reducing emissions. Five commercial-scale CCS projects are operational today with over 35 million tonnes of CO2 captured and stored since 1996. Observations from commercial storage projects, commercial enhanced oil recovery projects, engineered and natural analogues as well as theoretical considerations, models, and laboratory experiments suggest that appropriately selected and managed geological storage reservoirs are very likely to retain nearly all the injected CO2 for very long times, more than long enough to provide benefits for the intended purpose of CCS. Significant scale-up compared to existing CCS activities will be needed to achieve large reductions in CO2 emissions. A 5- to 10-fold scale-up in the size of individual projects is needed to capture and store emissions from a typical coal-fired power plant (500 to 1000 MW). A thousand fold scale-up in size of today’s CCS enterprise would be needed to reduce emissions by billions of tonnes per year (Gt/yr). The technical potential of CCS on a global level is promising, but on a regional level is differentiated. The primary technical limitation for CCS is storage capacity. Much more work needs to be done to realistically assess storage capacity on a worldwide, regional basis and sub-regional basis. Worldwide storage capacity estimation is improving but more experience is needed. Estimates for oil and gas reservoirs are about 1000 GtCO2, saline aquifers are estimated to have a capacity ranging from about 4000 to 23,000 GtCO2. However, there is still considerable debate about how much storage capacity actually exists, particularly in saline aquifers. Research, geological assessments and, most importantly, commercial-scale demonstration projects will be needed to improve confidence in capacity estimates. Costs and energy requirements for capture are high. Estimated costs for CCS vary widely, depending on the application (e.g. gas clean-up vs. electricity generation), the type of fuel, capture technology, and assumptions about the baseline technology. For example, with today’s technology, CCS would increase cost of generating electricity by 50–100%. In this case, capital costs and parasitic energy requirements of 15–30% are the major cost drivers. Research is underway to lower costs and energy requirements. Early demonstration projects are likely to cost more. The combination of high cost and low or absent incentives for large-scale deployment are a major factor limiting the widespread use of CCS. Due to high costs, CCS will not take place without strong incentives to limit CO2 emissions. Certainty about the policy and regulatory regimes will be crucial for obtaining access to capital to build these multi-billion dollar projects. Environmental risks of CCS appear manageable, but regulations are needed. Regulation needs to ensure due diligence over the lifecycle of the project, but should, most importantly, also govern site selection, operating guidelines, monitoring and closure of a storage facility. Experience so far has shown that local resistance to CO2 storage projects may appear and can lead to cancellation of planned CCS projects. Inhabitants of the areas around geological storage sites often have concerns about the safety and effectiveness of CCS. More CCS projects are needed to establish a convincing safety record. Early engagement of communities in project design and site selection as well as credible communication can help ease resistance. Environmental organisations sometimes see CCS as a distraction from a sustainable energy future. Social, economic, policy and political factors may limit deployment of CCS if not adequately addressed. Critical issues include ownership of underground pore space (primarily an issue in the US); long-term liability and stewardship; GHG accounting approaches and ve rification; and regulatory oversight regimes. Governments and the private sector are making significant progress on all of these issues. Government support to lower barriers for early deployments is needed to encourage private sector adoption. Developing countries will need support for technology access, lowering the cost of CCS, developing workforce capacity and training regulators for permitting, monitoring and oversight. CCS combined with biomass can lead to negative emissions . Such technologies are likely to be needed to achieve atmospheric stabilization of CO2 and may provide an additional incentive for CCS adoption

    Highly Accurate, But Still Discriminatory

    Get PDF
    The study aims to identify whether algorithmic decision making leads to unfair (i.e., unequal) treatment of certain protected groups in the recruitment context. Firms increasingly implement algorithmic decision making to save costs and increase efficiency. Moreover, algorithmic decision making is considered to be fairer than human decisions due to social prejudices. Recent publications, however, imply that the fairness of algorithmic decision making is not necessarily given. Therefore, to investigate this further, highly accurate algorithms were used to analyze a pre-existing data set of 10,000 video clips of individuals in self-presentation settings. The analysis shows that the under-representation concerning gender and ethnicity in the training data set leads to an unpredictable overestimation and/or underestimation of the likelihood of inviting representatives of these groups to a job interview. Furthermore, algorithms replicate the existing inequalities in the data set. Firms have to be careful when implementing algorithmic video analysis during recruitment as biases occur if the underlying training data set is unbalanced
    corecore