1,735 research outputs found
Globalization of twisted partial actions
Let A be a unital ring which is a product of possibly infinitely many
indecomposable rings. We establish criteria for the existence of a
globalization for a given twisted partial action of a group on A. If the
globalization exists, it is unique up to a certain equivalence relation and,
moreover, the crossed product corresponding to the twisted partial action is
Morita equivalent to that corresponding to its globalization. For arbitrary
unital rings the globalization problem is reduced to an extendibility property
of the multipliers involved in the twisted partial action.Comment: 27 pages. To appear in Trans. Amer. Math. Soc
The little-studied cluster Berkeley 90. II. The foreground ISM
Context: Nearly one century after their discovery, the carrier(s) of Diffuse
Interstellar Bands is/are still unknown and there are few sightlines studied in
detail for a large number of DIBs. Aims: We want to study the ISM sightlines
towards LS III +46 11 and LS III +46 12, two early-O-type stellar systems, and
LS III +46 11 B, a mid-B-type star. The three targets are located in the
stellar cluster Berkeley 90 and have a high extinction. Methods: We use the
multi-epoch high-S/N optical spectra presented in paper I (Ma\'iz Apell\'aniz
et al. 2015), the extinction results derived there, and additional spectra.
Results: We have measured equivalent widths, velocities, and FWHMs for a large
number of absorption lines in the rich ISM spectrum in front of Berkeley 90.
The absorbing ISM has at least two clouds at different velocities, one with a
lower column density (thinner) in the K I lines located away from Berkeley 90
and another one with a higher column density (thicker) associated with the
cluster. The first cloud has similar properties for both O-star sightlines but
the second one is thicker for LS III +46 11. The comparison between species
indicate that the cloud with a higher column density has a denser core,
allowing us to classify the DIBs in a sigma-zeta scale, some of them for the
first time. The LS III +46 12 sightline also has a high-velocity redshifted
component.Comment: Accepted for publication in A&
The spectroscopic Hertzsprung-Russell diagram of Galactic massive stars
The distribution of stars in the Hertzsprung-Russell diagram narrates their
evolutionary history and directly assesses their properties. Placing stars in
this diagram however requires the knowledge of their distances and interstellar
extinctions, which are often poorly known for Galactic stars. The spectroscopic
Hertzsprung-Russell diagram (sHRD) tells similar evolutionary tales, but is
independent of distance and extinction measurements. Based on spectroscopically
derived effective temperatures and gravities of almost 600 stars, we derive for
the first time the observational distribution of Galactic massive stars in the
sHRD. While biases and statistical limitations in the data prevent detailed
quantitative conclusions at this time, we see several clear qualitative trends.
By comparing the observational sHRD with different state-of-the-art stellar
evolutionary predictions, we conclude that convective core overshooting may be
mass-dependent and, at high mass (), stronger than previously
thought. Furthermore, we find evidence for an empirical upper limit in the sHRD
for stars with between 10000 and 32000 K and, a strikingly large
number of objects below this line. This over-density may be due to inflation
expanding envelopes in massive main-sequence stars near the Eddington limit.Comment: 5 pages, 2 figures, 1 table; accepted for publication in A&A Letter
Recommended from our members
Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool.
Mesenchymal stem cells (MSCs) from adult somatic tissues may differentiate in vitro and in vivo into multiple mesodermal tissues including bone, cartilage, adipose tissue, tendon, ligament or even muscle. MSCs preferentially home to damaged tissues where they exert their therapeutic potential. A striking feature of the MSCs is their low inherent immunogenicity as they induce little, if any, proliferation of allogeneic lymphocytes and antigen-presenting cells. Instead, MSCs appear to be immunosuppressive in vitro. Their multilineage differentiation potential coupled to their immuno-privileged properties is being exploited worldwide for both autologous and allogeneic cell replacement strategies. Here, we introduce the readers to the biology of MSCs and the mechanisms underlying immune tolerance. We then outline potential cell replacement strategies and clinical applications based on the MSCs immunological properties. Ongoing clinical trials for graft-versus-host-disease, haematopoietic recovery after co-transplantation of MSCs along with haematopoietic stem cells and tissue repair are discussed. Finally, we review the emerging area based on the use of MSCs as a target cell subset for either spontaneous or induced neoplastic transformation and, for modelling non-haematological mesenchymal cancers such as sarcomas
Oxygen and silicon abundances in Cygnus OB2: Chemical homogeneity in a sample of OB slow rotators
Cygnus OB2 is a rich OB association in the Galaxy which has experienced
intense star formation in the last 20-25 Myr. Its stellar population shows a
correlation between age and Galactic longitude. Exploring the chemical
composition of its stellar content we will be able to check the degree of
homogeneity of the natal molecular cloud and possible effects of
self-enrichment processes. Our aim is to determine silicon and oxygen
abundances for a sample of eight early-type slow rotators in Cygnus OB2 in
order to check possible inhomogeneities across the whole association and
whether there exists a correlation of chemical composition with Galactic
longitude. We have performed a spectroscopic analysis of a sample of late O and
early B stars with low rotational velocity, which have been chosen so as to
cover the whole association area. We have carried out an analysis based on
equivalent widths of metal lines, the wings of the H Balmer lines and FASTWIND
stellar atmosphere models to determine their stellar fundamental parameters as
well as the silicon and oxygen surface abundances. We derive a rather
homogeneous distribution of silicon and oxygen abundances across the region,
with average values of 12+log(Si/H)=7.530.08 dex and
12+log(O/H)=8.650.12 dex. We find a homogeneous chemical composition in
Cygnus OB2 with no clear evidence for significant chemical self-enrichment,
despite indications of strong stellar winds and possible supernovae during the
history of the region. Comparison with different scenarios of chemical
enrichment by stellar winds and supernovae point to star forming efficiencies
not significantly above 10%. The degree of homogeneity that we find is
consistent with the observed Milky Way oxygen gradient based on HII regions. We
also find that the oxygen scatter within Cygnus OB2 is at least of the same
order than among HII regions at similar Galactocentric distance.Comment: 15 pages, 7 figures, accepted for publication in Astronomy &
Astrophysic
The Library of Babel
We show that heavy pure states of gravity can appear to be mixed states to
almost all probes. Our arguments are made for Schwarzschild black
holes using the field theory dual to string theory in such spacetimes. Our
results follow from applying information theoretic notions to field theory
operators capable of describing very heavy states in gravity. For certain
supersymmetric states of the theory, our account is exact: the microstates are
described in gravity by a spacetime ``foam'', the precise details of which are
invisible to almost all probes.Comment: 7 pages, 1 figure, Essay receiving honorable mention in the 2005
Gravity Research Foundation essay competitio
PN fast winds: Temporal structure and stellar rotation
To diagnose the time-variable structure in the fast winds of central stars of
planetary nebulae (CSPN), we present an analysis of P Cygni line profiles in
FUSE satellite far-UV spectroscopic data. Archival spectra are retrieved to
form time-series datasets for the H-rich CSPN NGC 6826, IC 418, IC 2149, IC
4593 and NGC 6543. Despite limitations due to the fragmented sampling of the
time-series, we demonstrate that in all 5 CSPN the UV resonance lines are
variable primarily due to the occurrence of blueward migrating discrete
absorption components (DACs). Empirical (SEI) line-synthesis modelling is used
to determine the range of fluctuations in radial optical depth, which are
assigned to the temporal changes in large-scale wind structures. We argue that
DACs are common in CSPN winds, and their empirical properties are akin to those
of similar structures seen in the absorption troughs of massive OB stars.
Constraints on PN central star rotation velocities are derived from
Fast-Fourier Transform analysis of photospheric lines for our target stars.
Favouring the causal role of co-rotating interaction regions, we explore
connections between normalised DAC accelerations and rotation rates of PN
central stars and O stars. The comparative properties suggest that the same
physical mechanism is acting to generate large-scale structure in the
line-driven winds in the two different settings.Comment: Accepted for publication in MNRAS; 10 pages, 5 figure
Mechanical behavior of surgical meshes for abdominal wall repair: In vivo versus biaxial characterization
Despite the widespread use of synthetic meshes in the surgical treatment of the hernia pathology, the election criteria of a suitable mesh for specific patient continues to be uncertain. Thus, in this work, we propose a methodology to determine in advance potential disadvantages on the use of certain meshes based on the patient-specific abdominal geometry and the mechanical features of the certain meshes. To that purpose, we have first characterized the mechanical behavior of four synthetic meshes through biaxial tests. Secondly, two of these meshes were implanted in several New Zealand rabbits with a total defect previously created on the center of the abdominal wall. After the surgical procedure, specimen were subjected to in vivo pneumoperitoneum tests to determine the immediate post-surgical response of those meshes after implanted in a healthy specimen. Experimental performance was recorded by a stereo rig with the aim of obtaining quantitative information about the pressure-displacement relation of the abdominal wall. Finally, following the procedure presented in prior works (Simón-Allué et al., 2015, 2017), a finite element model was reconstructed from the experimental measurements and tests were computationally reproduced for the healthy and herniated cases. Simulations were compared and validated with the in vivo behavior and results were given along the abdominal wall in terms of displacements, stresses and strain. Mechanical characterization of the meshes revealed Surgipro TM as the most rigid implant and Neomesh SuperSoft® as the softer, while other two meshes (Neomesh Soft® Neopore®) remained in between. These two meshes were employed in the experimental study and resulted in similar effect in the abdominal wall cavity and both were close to the healthy case. Simulations confirmed this result while showed potential objections in the case of the other two meshes, due to high values in stresses or elongation that may led to discomfort in real tissue. The use of this methodology on human surgery may provide the surgeons with reliable and useful information to avoid certain meshes on specific-patient treatment
- …