5,436 research outputs found

    Hole maximum density droplets of an antidot in strong magnetic fields

    Full text link
    We investigate a quantum antidot in the integer quantum Hall regime (the filling factor is two) by using a Hartree-Fock approach and by transforming the electron antidot into a system which confines holes via an electron-hole transformation. We find that its ground state is the maximum density droplet of holes in certain parameter ranges. The competition between electron-electron interactions and the confinement potential governs the properties of the hole droplet such as its spin configuration. The ground-state transitions between the droplets with different spin configurations occur as magnetic field varies. For a bell-shape antidot containing about 300 holes, the features of the transitions are in good agreement with the predictions of a recently proposed capacitive interaction model for antidots as well as recent experimental observations. We show this agreement by obtaining the parameters of the capacitive interaction model from the Hartree-Fock results. An inverse parabolic antidot is also studied. Its ground-state transitions, however, display different magnetic-field dependence from that of a bell-shape antidot. Our study demonstrates that the shape of antidot potential affects its physical properties significantly.Comment: 12 pages, 11 figure

    The reverberation signatures of rotating disc winds in active galactic nuclei

    Full text link
    The broad emission lines (BELs) in active galactic nuclei (AGN) respond to ionizing continuum variations. The time and velocity dependence of their response depends on the structure of the broad-line region: its geometry, kinematics and ionization state. Here, we predict the reverberation signatures of BELs formed in rotating accretion disc winds. We use a Monte Carlo radiative transfer and ionization code to predict velocity-delay maps for representative high- (C IV~IV) and low-ionization (Hα\alpha) emission lines in both high- and moderate-luminosity AGN. Self-shielding, multiple scattering and the ionization structure of the outflows are all self-consistently taken into account, while small-scale structure in the outflow is modelled in the micro-clumping approximation. Our main findings are: (1) The velocity-delay maps of smooth/micro-clumped outflows often contain significant negative responses. (2)~The reverberation signatures of disc wind models tend to be rotation dominated and can even resemble the classic "red-leads-blue" inflow signature. (3) Traditional "blue-leads-red" outflow signatures can usually only be observed in the long-delay limit. (4) Our models predict lag-luminosity relationships similar to those inferred from observations, but systematically underpredict the observed centroid delays. (5) The ratio between "virial product" and black hole mass predicted by our models depends on viewing angle. Our results imply that considerable care needs to be taken in interpreting data obtained by observational reverberation mapping campaigns. In particular, basic signatures such as "red-leads-blue", "blue-leads-red" and "blue and red vary jointly" are not always reliable indicators of inflow, outflow or rotation. This may help to explain the perplexing diversity of such signatures seen in observational campaigns to date.Comment: 15 pages, 17 figures, 2 tables. Accepted by MNRAS 20/7/201

    The Impact of the Guide Vane on the BIWT System for the Distributed Wind Generation in the Urban Area

    Get PDF
    This paper reports a study on the impact of the guide vane on the Building Integrated Wind Turbine (BIWT) system for the distributed wind generation in the urban area. The guide vane is combined with the rotor to concentrate and accelerate the incoming wind to drive the turbine for power generation. The improved BIWT system has several advantages over the conventional BIWT system; it does not require the structural reinforcement of the building because it generates electricity based on the wind pressure acting on the building’s wall. Furthermore, the guide vane conceals the rotor from the view of pedestrians to maintain the aesthetic value of the building. The analysis focuses on the installation of the BIWT design at a high-rise building. The study evaluates the wind dynamics characteristic on the building’s wall using the computational fluid dynamics (CFD) software. Consequently, the producible power output is estimated based on the wind dynamics characteristic. The effectiveness of the BIWT with the guide vane is evaluated on the actual wind data measured at Kota Kinabalu, Sandakan and Kudat. The result shows that the guide vane increases the producible power output by 129.09%

    Towards unified understanding of conductance of stretched monatomic contacts

    Full text link
    When monatomic contacts are stretched, their conductance behaves in qualitatively different ways depending on their constituent atomic elements. Under a single assumption of resonance formation, we show that various conductance behavior can be understood in a unified way in terms of the response of the resonance to stretching. This analysis clarifies the crucial roles played by the number of valence electrons, charge neutrality, and orbital shapes.Comment: 2 figure

    Coulomb Blockade and Kondo Effect in a Quantum Hall Antidot

    Full text link
    We propose a general capacitive model for an antidot, which has two localized edge states with different spins in the quantum Hall regime. The capacitive coupling of localized excess charges, which are generated around the antidot due to magnetic flux quantization, and their effective spin fluctuation can result in Coulomb blockade, h/(2e) Aharonov-Bohm oscillations, and the Kondo effect. The resultant conductance is in qualitative agreement with recent experimental data.Comment: 3 figures, to appear in Physical Review Letter

    Magnetic edge states in graphene in nonuniform magnetic fields

    Full text link
    We theoretically study electronic properties of a graphene sheet on xy plane in a spatially nonuniform magnetic field, B=B0z^B = B_0 \hat{z} in one domain and B=B1z^B = B_1 \hat{z} in the other domain, in the quantum Hall regime and in the low-energy limit. We find that the magnetic edge states of the Dirac fermions, formed along the boundary between the two domains, have features strongly dependent on whether B0B_0 is parallel or antiparallel to B1B_1. In the parallel case, when the Zeeman spin splitting can be ignored, the magnetic edge states originating from the n=0n=0 Landau levels of the two domains have dispersionless energy levels, contrary to those from the n0n \ne 0 levels. Here, nn is the graphene Landau-level index. They become dispersive as the Zeeman splitting becomes finite or as an electrostatic step potential is additionally applied. In the antiparallel case, the n=0n=0 magnetic edge states split into electron-like and hole-like current-carrying states. The energy gap between the electron-like and hole-like states can be created by the Zeeman splitting or by the step potential. These features are attributed to the fact that the pseudo-spin of the magnetic edge states couples to the direction of the magnetic field. We propose an Aharonov-Bohm interferometry setup in a graphene ribbon for experimental study of the magnetic edge states.Comment: 8 pages, 6 figure

    Electron-Transport Properties of Na Nanowires under Applied Bias Voltages

    Full text link
    We present first-principles calculations on electron transport through Na nanowires at finite bias voltages. The nanowire exhibits a nonlinear current-voltage characteristic and negative differential conductance. The latter is explained by the drastic suppression of the transmission peaks which is attributed to the electron transportability of the negatively biased plinth attached to the end of the nanowire. In addition, the finding that a voltage drop preferentially occurs on the negatively biased side of the nanowire is discussed in relation to the electronic structure and conduction.Comment: 4 pages, 6 figure

    Drivers influencing shared services adoption

    Get PDF
    Organizations seeking improvements in their performance are increasingly exploring alternative models and approaches for providing support services; one such approach being Shared Services. Shared Services has the potential to provide positive and powerful impact to the organizations with the support of Information Systems (IS) as the platform for Shared Services application and implementation. Due to this situation, Shared Services is becoming one of the choices in IS area for researcher to conduct a research. Shared Services results a lot of positive outcomes especially improving on the organizations financial expenses. Although various studies have been identified in discussing about the benefits of Shared Services, drivers of Shared Services that influence its adoption have received little research attention. This paper has identified several drivers that influence organizations to adopt Shared Services. By using NVivo as a tool to analyze the content from selected journal articles, 5 drivers of Shared Services adoption were identified. This suggesting the strength and benefits in adopting shared service. By identifying the drivers, it could encourage the top management as the decision maker to implement Shared Services in their organization. Thus, this could lead to the business operation to operate more effectively

    Determination of Leptospira borgpetersenii serovar Javanica and Leptospira interrogans serovar Bataviae as the persistent Leptospira serovars circulating in the urban rat populations in peninsular Malaysia

    Get PDF
    Background: Leptospirosis is an emerging infectious disease of global significance, and is endemic in tropical countries, including Malaysia. Over the last decade, a dramatic increase of human cases was reported; however, information on the primary vector, the rat, and the Leptospira serovars circulating among the rat population is limited. Therefore, the present study was undertaken to isolate Leptospira and characterise the serovars circulating in the urban rat populations from selected main cities in Peninsular Malaysia. Methods: Rat trappings were carried out between October 2011 to February 2014 in five urban cities which were chosen as study sites to represent different geographical locations in Peninsular Malaysia. Microscopic agglutination test (MAT) and PCR were carried out to identify the Leptospiral serogroup and determine the pathogenic status of the isolates, respectively while pulsed-field gel electrophoresis (PFGE) and random amplified polymorphic DNA (RAPD)-PCR were used to characterize the isolates. Results: Three rat species were identified from the three hundred and fifty seven rats captured with Rattus rattus, being the dominant rat species (285, 80 %) followed by Rattus norgevicus (53, 15 %) and Rattus exulans (19, 5 %). Only 39 samples (11.0 %) were positive by culture and further confirmed as pathogenic Leptospira by PCR. Significant associations were shown between host infection with locality, season, host-age and species. Based on MAT, two serogroups were identified in the population namely; L. borgpetersenii serogroup Javanica (n = 16) and L. interrogans serogroup Bataviae (n = 23). Pulsed-field gel electrophoresis (PFGE) distinguished the two serovars in the urban rat populations: L. borgpetersenii serovar Javanica (41 %), and L. interrogans serovar Bataviae (59 %). RAPD-PCR yielded 14 distinct patterns and was found to be more discriminative than PFGE. Conclusions: This study confirms two Leptospira serovars circulating among the urban rats population in Peninsular Malaysia namely; L. borgpetersenii serovar Javanica and L. interrogans serovars Bataviae. Despite the low number of isolates obtained from the rat population, this study suggests that rodent control programs and disease surveillance may help to reduce the possible risk of disease transmission
    corecore