16 research outputs found

    Colchicine reduces extracellular vesicle NLRP3 inflammasome protein levels in chronic coronary disease: A LoDoCo2 biomarker substudy

    Get PDF
    Background and aims: Colchicine reduces the risk of cardiovascular events in patients with coronary disease. Colchicine has broad anti-inflammatory effects and part of the atheroprotective effects have been suggested to be the result of NLRP3 inflammasome inhibition. We studied the effect of colchicine on extracellular vesicle (EV) NLRP3 protein levels and inflammatory markers, high sensitivity-CRP (hs-CRP) and interleukin (IL)-6, in patients with chronic coronary disease. Methods: In vitro, the NLRP3 inflammasome was stimulated in PMA-differentiated- and undifferentiated THP-1 cells. In vivo, measurements were performed in serum obtained from 278 participants of the LoDoCo2 trial, one year after randomization to colchicine 0.5 mg once daily or placebo. EVs were isolated using precipitation. NLRP3 protein presence in EVs was confirmed using iodixanol density gradient centrifugation. Levels of NLRP3 protein, hs-CRP and IL-6 were measured using ELISA. Results: In vitro, NLRP3 inflammasome stimulation showed an increase of EV NLRP3 protein levels. EV NLRP3 protein levels were lower in patients treated with colchicine (median 1.38 ng/mL), compared to placebo (median 1.58 ng/mL) (p = 0.025). No difference was observed in serum NLRP3 protein levels. Serum hs-CRP levels were lower in patients treated with colchicine (median 0.80 mg/L) compared to placebo (median 1.34 mg/L) (p < 0.005). IL-6 levels were lower in patients treated with colchicine (median 2.07 ng/L) compared to placebo (median 2.59 ng/L), although this was not statistically significant (p = 0.076). Conclusions: Colchicine leads to a reduction of EV NLRP3 protein levels. This indicates that inhibitory effects on the NLRP3 inflammasome might contribute to the atheroprotective effects of colchicine in coronary disease

    Neutral Effects of Combined Treatment With GLP-1R Agonist Exenatide and MR Antagonist Potassium Canrenoate on Cardiac Function in Porcine and Murine Chronic Heart Failure Models

    Get PDF
    Background: Ischemia-reperfusion and cardiac remodeling is associated with cardiomyocyte death, excessive fibrosis formation, and functional decline, eventually resulting in heart failure (HF). Glucagon-like peptide (GLP)-1 agonists are reported to reduce apoptosis and myocardial infarct size after ischemia-reperfusion. Moreover, mineralocorticoid receptor antagonists (MRAs) have been described to reduce reactive fibrosis and improve cardiac function. Here, we investigated whether combined treatment with GLP-1R agonist exenatide and MRA potassium canrenoate could minimize cardiac injury and limit HF progression in animal models of chronic HF. Methods and Results: Forty female Topigs Norsvin pigs were subjected to 150 min balloon occlusion of the left anterior descending artery (LAD). Prior to reperfusion, pigs were randomly assigned to placebo or combination therapy (either low dose or high dose). Treatment was applied for two consecutive days or for 8 weeks with a continued high dose via a tunneled intravenous catheter. Using 2,3,5-Triphenyltetrazolium chloride (TTC) staining we observed that combination therapy did not affect the scar size after 8 weeks. In line, left ventricular volume and function assessed by three-dimensional (3D) echocardiography (baseline, 7 days and 8 weeks), and cardiac magnetic resonance imaging (CMR, 8 weeks) did not differ between experimental groups. In addition, 36 C57Bl/6JRj mice underwent permanent LAD-occlusion and were treated with either placebo or combination therapy prior to reperfusion, for two consecutive days via intravenous injection, followed by continued treatment via placement of osmotic mini-pumps for 28 days. Global cardiac function, assessed by 3D echocardiography performed at baseline, 7, 14, and 28 days, did not differ between treatment groups. Also, no differences were observed in cardiac hypertrophy, assessed by heart weight/bodyweight and heart weight/tibia length ratio. Conclusion: In the current study, combined treatment with GLP-1R agonist exenatide and MR antagonist potassium canrenoate did not show beneficial effects on cardiac remodeling nor resulted in functional improvement in a small and large animal chronic HF model

    Damage-Associated Molecular Patterns in Myocardial Infarction and Heart Transplantation: The Road to Translational Success

    Get PDF
    In the setting of myocardial infarction (MI), ischemia reperfusion injury (IRI) occurs due to occlusion (ischemia) and subsequent re-establishment of blood flow (reperfusion) of a coronary artery. A similar phenomenon is observed in heart transplantation (HTx) when, after cold storage, the donor heart is connected to the recipient's circulation. Although reperfusion is essential for the survival of cardiomyocytes, it paradoxically leads to additional myocardial damage in experimental MI and HTx models. Damage (or danger)-associated molecular patterns (DAMPs) are endogenous molecules released after cellular damage or stress such as myocardial IRI. DAMPs activate pattern recognition receptors (PRRs), and set in motion a complex signaling cascade resulting in the release of cytokines and a profound inflammatory reaction. This inflammatory response is thought to function as a double-edged sword. Although it enables removal of cell debris and promotes wound healing, DAMP mediated signalling can also exacerbate the inflammatory state in a disproportional matter, thereby leading to additional tissue damage. Upon MI, this leads to expansion of the infarcted area and deterioration of cardiac function in preclinical models. Eventually this culminates in adverse myocardial remodeling; a process that leads to increased myocardial fibrosis, gradual further loss of cardiomyocytes, left ventricular dilation and heart failure. Upon HTx, DAMPs aggravate ischemic damage, which results in more pronounced reperfusion injury that impacts cardiac function and increases the occurrence of primary graft dysfunction and graft rejection via cytokine release, cardiac edema, enhanced myocardial/endothelial damage and allograft fibrosis. Therapies targeting DAMPs or PRRs have predominantly been investigated in experimental models and are potentially cardioprotective. To date, however, none of these interventions have reached the clinical arena. In this review we summarize the current evidence of involvement of DAMPs and PRRs in the inflammatory response after MI and HTx. Furthermore, we will discuss various current therapeutic approaches targeting this complex interplay and provide possible reasons why clinical translation still fails

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Extracellular vesicles in diagnosing chronic coronary syndromes—the bumpy road to clinical implementation

    Get PDF
    Coronary artery disease (CAD), comprising both acute coronary syndromes (ACS) and chronic coronary syndromes (CCS), remains one of the most important killers throughout the entire world. ACS is often quickly diagnosed by either deviation on an electrocardiogram or elevated levels of troponin, but CCS appears to be more complicated. The most used noninvasive strategies to diagnose CCS are coronary computed tomography and perfusion imaging. Although both show reasonable accuracy (80–90%), these modalities are becoming more and more subject of debate due to costs, radiation and increasing inappropriate use in low‐risk patients. A reliable, blood‐based biomarker is not available for CCS but would be of great clinical importance. Extracellular vesicles (EVs) are lipid‐bilayer membrane vesicles containing bioactive contents e.g., proteins, lipids and nucleic acids. EVs are often referred to as the “liquid biopsy” since their contents reflect changes in the condition of the cell they originate from. Although EVs are studied extensively for their role as biomarkers in the cardiovascular field during the last decade, they are still not incorporated into clinical practice in this field. This review provides an overview on EV biomarkers in CCS and discusses the clinical and technological aspects important for successful clinical application of EVs

    Extracellular Vesicle cystatin c is associated with unstable angina in troponin negative patients with acute chest pain

    Get PDF
    BACKGROUND: Despite the use of high-sensitive cardiac troponin there remains a group of high-sensitive cardiac troponin negative patients with unstable angina with a non-neglectable risk for future adverse cardiovascular events, emphasising the need for additional risk stratification. Plasma extracellular vesicles are small bilayer membrane vesicles known for their potential role as biomarker source. Their role in unstable angina remains unexplored. We investigate if extracellular vesicle proteins are associated with unstable angina in patients with chest pain and low high-sensitive cardiac troponin. METHODS: The MINERVA study included patients presenting with acute chest pain but no acute coronary syndrome. We performed an exploratory retrospective case-control analysis among 269 patients. Cases were defined as patients with low high-sensitive cardiac troponin and proven ischemia. Patients without ischemia were selected as controls. Blood samples were fractionated to analyse the EV proteins in three plasma-subfractions: TEX, HDL and LDL. Protein levels were quantified using electrochemiluminescence immunoassay. RESULTS: Lower levels of (adjusted) EV cystatin c in the TEX subfraction were associated with having unstable angina (OR 0.93 95% CI 0.88-0.99). CONCLUSION: In patients with acute chest pain but low high-sensitive cardiac troponin, lower levels of plasma extracellular vesicle cystatin c are associated with having unstable angina. This finding is hypothesis generating only considering the small sample size and needs to be confirmed in larger cohort studies, but still identifies extracellular vesicle proteins as source for additional risk stratification

    High levels of osteoprotegerin are associated with coronary artery calcification in patients suspected of a chronic coronary syndrome

    Get PDF
    Plasma osteoprotegerin (OPG) and vascular smooth muscle cell (VSMC) derived extracellular vesicles (EVs) are important regulators in the process of vascular calcification (VC). In population studies, high levels of OPG are associated with events. In animal studies, however, high OPG levels result in reduction of VC. VSMC-derived EVs are assumed to be responsible for OPG transport and VC but this role has not been studied. For this, we investigated the association between OPG in plasma and circulating EVs with coronary artery calcium (CAC) as surrogate for VC in symptomatic patients. We retrospectively assessed 742 patients undergoing myocardial perfusion imaging (MPI). CAC scores were determined on the MPI-CT images using a previously developed automated algorithm. Levels of OPG were quantified in plasma and two EV-subpopulations (LDL and TEX), using an electrochemiluminescence immunoassay. Circulating levels of OPG were independently associated with CAC scores in plasma; OR 1.39 (95% CI 1.17–1.65), and both EV populations; EV-LDL; OR 1.51 (95% CI 1.27–1.80) and EV-TEX; OR 1.21 (95% CI 1.02–1.42). High levels of OPG in plasma were independently associated with CAC scores in this symptomatic patient cohort. High levels of EV-derived OPG showed the same positive association with CAC scores, suggesting that EV-derived OPG mirrors the same pathophysiological process as plasma OPG

    Plasma extracellular vesicle proteins are associated with stress-induced myocardial ischemia in women presenting with chest pain

    Get PDF
    Diagnosing stable ischemic heart disease (IHD) is challenging, especially in females. Currently, no blood test is available. Plasma extracellular vesicles (EV) are emerging as potential biomarker source. We therefore aimed to identify stress induced ischemia due to stable IHD with plasma extracellular vesicle protein levels in chest pain patients. We analyzed 450 patients suspected for stable IHD who were referred for 82Rb PET/CT in the outpatient clinic. Blood samples were collected before PET/CT and plasma EVs were isolated in 3 plasma subfractions named: TEX, HDL, LDL. In total 6 proteins were quantified in each of these subfractions using immuno-bead assays. CD14 and CystatinC protein levels were independent significant predictors of stress-induced ischemia in the LDL and the HDL subfraction and SerpinC1 and SerpinG1 protein levels in the HDL fraction. Subgroup-analysis on sex revealed that these associations were completely attributed to the associations in women. None of the significant EV proteins remained significant in men. Plasma EV proteins levels are associated with the presence of stable IHD in females presenting with chest pain. This finding, if confirmed in larger cohort studies could be a crucial step in improving diagnostic assessment of women with suspected IHD

    The Effect of Years-Long Exposure to Low-Dose Colchicine on Renal and Liver Function and Blood Creatine Kinase Levels: Safety Insights from the Low-Dose Colchicine 2 (LoDoCo2) Trial

    No full text
    Background and Objective: The Low-Dose Colchicine-2 (LoDoCo2) trial showed that 2–4 years exposure to colchicine 0.5 mg once daily reduced the risk of cardiovascular events in patients with chronic coronary artery disease. The potential effect of years-long exposure to colchicine on renal or liver function and creatine kinase (CK) has not been systematically evaluated and was investigated in this LoDoCo2 substudy. Methods: Blood samples drawn from 1776 participants at the close-out visit of the LoDoCo2 trial were used to measure markers of renal function (creatinine, blood urea nitrogen [BUN]), liver function (alanine aminotransferase [ALT], γ-glutamyl transferase [GGT], bilirubin and albumin), and CK. Renal and liver function as well as hyperCKemia (elevated CK) were categorized to the degree of elevation biomarkers as mild, mild/moderate, moderate/severe, and marked elevations. Results: In total, 1776 participants (mean age 66.5 years, 72% male) contributed to this analysis, with a median exposure to trial medication of 32.7 months. Compared with placebo, colchicine was not associated with changes in creatinine and BUN but was associated with elevations in ALT (30 U/L vs. 26 U/L; p  5–10 × upper limit of normal [ULN]) in both treatment groups, and 6 (0.7%) colchicine-treated vs. 2 (0.2%) placebo-treated participants had moderate to marked CK elevations (> 5–10 × ULN). Conclusion: In chronic coronary artery disease, 2–4 years of exposure to colchicine 0.5 mg once daily was associated with small elevations in ALT and CK, but was not associated with changes in renal function. Trial Registration: https://www.anzctr.org.au; ACTRN12614000093684, 24 January 2014
    corecore