3 research outputs found

    The role of nitric oxide during embryonic epidermis development of Xenopus laevis

    No full text
    Nitric oxide (NO) is a potent radical molecule that participates in various biological processes such as vasodilation, cell proliferation, immune response and neurotransmission. NO mainly activates soluble guanylate cyclase, leading to cGMP production and activation of protein kinase G and its downstream targets. Here we report the essential role of NO during embryonic epidermis development. Xenopus embryonic epidermis has become a useful model reflecting human epithelial tissue composition. The developing epidermis of Xenopus laevis is formed from specialized ionocytes, multi-ciliated, goblet and small secretory cells. We found that NO is mainly produced in multi-ciliated cells and ionocytes. Production of NO during early developmental stages is required for formation of multi-ciliated cells, ionocytes and small secretory cells by regulation of epidermal-specific gene expression. The data from this research indicate a novel role of NO during development, which supports recent findings of NO production in human mucociliary and epithelium development

    Effects of post-mortem and physical degradation on RNA integrity and quality

    No full text
    The precision and reliability of quantitative nucleic acid analysis depends on the quality of the sample analyzed and the integrity of the nucleic acids. The integrity of RNA is currently primarily assessed by the analysis of ribosomal RNA, which is the by far dominant species. The extrapolation of these results to mRNAs and microRNAs, which are structurally quite different, is questionable. Here we show that ribosomal and some nucleolar and mitochondrial RNAs, are highly resistant to naturally occurring post-mortem degradation, while mRNAs, although showing substantial internal variability, are generally much more prone to nucleolytic degradation. In contrast, all types of RNA show the same sensitivity to heat. Using qPCR assays targeting different regions of mRNA molecules, we find no support for 5′ or 3′ preferentiality upon post-mortem degradation
    corecore