3 research outputs found
Prediction of live birth - selection of embryos using morphokinetic parameters
Backround. The goal of assisted reproduction is for a couple treated with IVF techniques to end the treatment by giving birth to a healthy baby. A neccessary presumption for success is the identification of the best embryo with high implantation and developmental potential. One option is to select an euploid embryo by invasive preimplantaion genetic testing for aneuploidy (PGT-A) or it is possible to select the best embryo by non-invasive time-lapse monitoring (TLM), specifically based on morphokinetic parameters and morphological markers that are able to identify an embryo with high developmental potential. Materials and Methods. The study involved a total of 1060 embryos (585 euploid and 475 aneuploid embryos after PGT-A) with good morphology from 329 patients in the period 01/2016-10/2021. All embryos were cultured in a time-lapse incubator, trophectoderm (TE) cells biopsies for PGT-A examination were performed on day 5 (D5) or day 6 (D6) of culture. During the study period, 225 frozen embryo transfers (FET) of one euploid embryo were performed. Based on the treatment outcome, the embryos were divided into 2 groups - euploid embryos, which led to the birth of a healthy child, and euploid embryos that did not show fetal heartbeat (FHB) after FET. Results. Based on the statistical analysis of the embryos without implantation and the embryos with live birth, it is clear that the morphokinetic parameters t5 (time of division into 5 cells) and tSB (time of start of blastulation) are significantly different. Conclusion. The results suggest that of the morphokinetic parameters tSB and t5 are predictive indicators for selecting an embryo with high developmental potential and with a high probability of achieving the birth of a healthy child
Reduced Radiation Exposure Protocol during Computer Tomography of the Left Atrium Prior to Catheter Ablation in Patients with Atrial Fibrillation
(1) Background: Computer tomography (CT) is an imaging modality used in the pre-planning of radiofrequency catheter ablation (RFA) procedure in patients with cardiac arrhythmias. However, it is associated with a considerable ionizing radiation dose for patients. This study aims to develop and validate low-dose CT scanning protocols of the left atrium (LA) for RFA guidance. (2) Methods: 68 patients scheduled for RFA of atrial fibrillation were sequentially assigned to four groups of ECG-gated scanning protocols, based on the set tube current (TC): Group A (n = 20, TC = 33 mAs), Group B (n = 18, TC = 67 mAs), Group C (n = 10, TC = 135 mAs), and control Group D (n = 20, TC = 600 mAs). We used a 256-row multidetector CT with body weight-dependent tube voltage of 80 kVp (<70 kg), 100 kVp (70–90 kg), and 120 kVp (>90 kg). We evaluated scanning parameters including radiation dose, total scanning procedure time and signal-to-noise ratio (SNR). (3) Results: The average effective radiation dose (ED) was lower in Group A in comparison to Group B, C and D (0.83 (0.76–1.10), 1.55 (1.36–1.67), 2.91 (2.32–2.96) and 9.35 (8.00–10.04) mSv, p < 0.05). The total amount of contrast media was not significantly different between groups. The mean SNR was 6.5 (5.8–7.3), 7.1 (5.7–8.2), 10.8 (10.1–11.3), and 12.2 (9.9–15.7) for Group A, B, C and D, respectively. The comparisons of SNR in group A vs. B and C vs. D were without significant differences. (4) Conclusions: Optimized pre-ablation CT scanning protocols of the LA can reduce an average ED by 88.7%. Three dimensional (3D) models created with the lowest radiation protocol are useful for the integration of electro-anatomic-guided RFA procedures