24 research outputs found

    Helicobacter pylori infection combined with DENA revealed altered expression of p53 and 14-3-3 isoforms in Gulo−/− mice

    Get PDF
    AbstractUnlike most other mammals, human bodies do not have the ability to synthesize vitamin C inside of their own bodies. Therefore, humans must obtain vitamin C through daily diet. Gulo−/− mice strain is known with deficiency, in which vitamin C intake can be controlled by diet like human, and would be valuable for investigating the molecular mechanism of various diseases. In the present study, we established Gulo−/− mice model and investigated the differentially expressed proteins in stomach tissue of Gulo−/− mice after Helicobacter pylori-infected, and followed by DENA, using immunohistochemistry and proteomic approach. The results of immunohistochemistry analysis of stomach tissue showed that the tumor suppressor, p53 protein, expression was significantly decreased (p<0.05) but not messenger RNA (mRNA) transcriptional level, and 14-3-3ε, 14-3-3δ, Ki-67 and cleaved caspase 3 expressions were significantly increased (p<0.05) by H. Pylori infection, and followed by DENA treatment in Gulo−/− mice. Moreover, knockdown of 14-3-3 isoforms (14-3-3ε, 14-3-3σ, 14-3-3ζ and 14-3-3η) were significantly increased sub-G1 phase (characteristics of apoptosis) in AGS cells and, phenotypic changes like cell shrinkage, density and cleaved nuclei were also observed. Proteome analyses showed that 14-3-3σ, 14-3-3η, and tropomyosin alpha-1 chain were down-regulated, and Hspd1 protein and HSC70 were up-regulated after H. Pylori-infection, and followed by DENA. The combined results of immunohistochemistry and proteomic analysis suggest that H. pylori altered the p53 and 14-3-3 isoforms expression and DENA further enhanced the H. pylori effect, which might be involved in carcinogenesis and metastasis of gastric cancer on Gulo−/− mice

    Terpenoids from <i>Abies holophylla</i> Attenuate LPS-Induced Neuroinflammation in Microglial Cells by Suppressing the JNK-Related Signaling Pathway

    No full text
    We have previously reported that phytochemicals from Abies holophylla exhibit anti-inflammatory and neuroprotective effects by decreasing nitrite production and increasing nerve growth factor production. However, the exact mechanism underscoring these effects has not been revealed. In the present study, we aimed to explore the underlying anti-inflammatory mechanisms of A. holophylla and its phytochemicals. We studied various solvent fractions of A. holophylla and found the chloroform and hexane sub-fractions showed the most significant anti-neuroinflammatory effects in lipopolysaccharide (LPS)-activated murine microglia. Concomitantly, the terpenoids isolated from chloroform and hexane fractions showed similar anti-neuroinflammatory effects with significant inhibition of NO and reactive oxygen species production, and decreased protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase. Interestingly, these terpenoids inhibited the phosphorylation of c-Jun N-terminal kinase (JNK), which further inhibited the production of pro-inflammatory mediators, including prostaglandin E2, tumor necrosis factor, and interleukins (IL-6 and IL-1β), with a potency greater than that of the well-known iNOS inhibitor NG-mono-methyl-L-arginine (L-NMMA). These results suggest that the chloroform- and hexane-soluble fraction mediated the mitogen-activated protein kinase (MAPK) inhibition, in particular the JNK pathway, thereby lowering the inflammatory cascades in LPS-activated murine microglia. Thus, our study suggests that the chloroform and hexane fractions of A. holophylla and their terpenoids may be potential drug candidates for drug discovery against LPS-induced neuroinflammation and neuroinflammatory-related neurodegeneration

    Glyoxalase System in the Progression of Skin Aging and Skin Malignancies

    No full text
    Dicarbonyl compounds, including methylglyoxal (MGO) and glyoxal (GO), are mainly formed as byproducts of glucose metabolism. The main glyoxalase system consists of glyoxalase I and II (Glo1 and Glo2) and is the main enzyme involved in the detoxification of dicarbonyl stress, which occurs as an accumulation of MGO or GO due to decreased activity or expression of Glo1. Dicarbonyl stress is a major cause of cellular and tissue dysfunction that causes various health issues, including diabetes, aging, and cancer. The skin is the largest organ in the body. In this review, we discuss the role of the glyoxalase system in the progression of skin aging, and more importantly, skin malignancies. We also discuss the future prospects of the glyoxalase system in other skin abnormalities such as psoriasis and vitiligo, including hyperpigmentation. Finally, in the present review, we suggest the role of glyoxalase in the progression of skin aging and glyoxalase system as a potential target for anticancer drug development for skin cancer

    Oral Intake of Collagen Peptide Attenuates Ultraviolet B Irradiation-Induced Skin Dehydration In Vivo by Regulating Hyaluronic Acid Synthesis

    No full text
    Collagen peptide (CP) has beneficial effects on functions of the skin, such as skin barrier function and skin elasticity, in vivo. However, there are few studies investigating the mechanism underlying the potential effects of CP in skin epidermal moisturization after ultraviolet B (UVB) irradiation. In this study, we examined whether orally-administered CP affects the loss of skin hydration induced by UVB irradiation in hairless mice. SKH-1 hairless mice were orally administered CP at two doses (500 and 1000 mg/kg) for nine weeks, and the dorsal skin was exposed to UVB. The potential effects of CP were evaluated by measuring the transepidermal water loss (TEWL), skin hydration, wrinkle formation, and hyaluronic acid expression in the dorsal mice skin. We found that oral administration of CP increased skin hydration and decreased wrinkle formation compared to the UVB-irradiated group. Treatment of CP increased the mRNA and protein expression of hyaluronic acid synthases (HAS-1 and -2) concomitant with an increased hyaluronic acid production in skin tissue. The expression of hyaluronidase (HYAL-1 and 2) mRNA was downregulated in the CP-treated group. In addition, the protein expression of skin-hydrating factors, filaggrin and involucrin, was upregulated via oral administration of CP. In summary, these results show that oral administration of CP increases hyaluronic acid levels, which decreases during UVB photoaging. Therefore, we suggest that CP can be used as a nutricosmetic ingredient with potential effects on UVB-induced skin dehydration and moisture loss in addition to wrinkle formation

    Anti-Inflammatory Effect of Chloroform Fraction of Pyrus Ussuriensis Maxim. Leaf Extract on 2, 4-Dinitrochlorobenzene-Induced Atopic Dermatitis in nc/nga Mice

    No full text
    Pyrus ussuriensis Maxim, a pear commonly known as “Sandolbae” in Korea, is used as a traditional herbal medicine for asthma, cough, and fever in Korea, China, and Japan. P. ussuriensis Maxim leaves (PUL) have therapeutic effects on atopic dermatitis (AD). However, there are no reports on the efficacy of specific components of PUL. In the present study, activity-guided isolation of PUL was used to determine the compounds with potent activity. Astragalin was identified as the major component of the chloroform-soluble fraction of PUL (PULC) using High-performance liquid chromatography (HPLC) analysis. Astragalin and PULC were tested in vitro and in vivo for their effects against AD. PULC and astragalin dose-dependently inhibited the production of nitric oxide (NO) in mouse macrophage (RAW 264.7) cells, and interleukin (IL)-6 and IL-1β in tumor necrosis factor (TNF-α)/interferon γ (IFNγ) induced HaCaT cells. In the AD mice model, PULC and astragalin application significantly reduced dermatitis severity, scratching behavior, and trans-epidermal water loss (TEWL) when compared to that of 2, 4-dinitrochlorobenzene-treated NC/Nga mice. Additionally, they normalized skin barrier function by decreasing immunoglobulin E (IgE) levels in the serum. Filaggrin and involucrin protein levels were normalized by PULC treatment in HaCaT cells and skin lesions. These results indicate that PULC and astragalin ameliorate AD-like symptoms by alleviating both pro-inflammatory cytokines and immune stimuli in vitro and in vivo in animal models. Therefore, PULC and astragalin might be effective therapeutic agents for the treatment of AD

    Anti-Inflammatory Effect of Sulforaphane on LPS-Activated Microglia Potentially through JNK/AP-1/NF-κB Inhibition and Nrf2/HO-1 Activation

    No full text
    Sulforaphane (SFN), a potent nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is present in the species of the Brassicaceae, especially in broccoli sprouts. In this study, the effects of SFN against microglial activation and inflammation, and the potential mechanisms involved, were analyzed. As mitogen-activated protein kinase (MAPK) signaling plays a key role in microglial activation and inflammation, we focused on the role of SFN in regulating the MAPK signaling regulation of the inflammatory and anti-inflammatory cascades in lipopolysaccharide (LPS)-activated microglia. The anti-inflammatory and immunomodulatory effects of SFN were explored by evaluating the expression and secretion of inflammatory proteins, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-&#954;B), and activator protein-1 (AP-1) under pre- and post-treatment conditions. Under the SFN pre- and post-treatment conditions, the MAPK phosphorylation levels were significantly reduced in both acutely and chronically activated microglial cells. SFN also reduced the c-Jun N-terminal kinase (JNK) phosphorylation levels, which subsequently reduced NF-&#954;B and AP-1 signaling. As a result, the expression of the inflammatory mediators (iNOS, COX-2, NO, and PGE2) and proinflammatory cytokines (TNF-&#945;, IL-6, and IL-1&#946;) was decreased. At the same time, SFN increased the expression of Nrf2 and heme oxygenase-1 (HO-1) as well as the production of the anti-inflammatory cytokines IL-10 and IL-4. In conclusion, this study demonstrated that SFN exerts an anti-neuroinflammatory effect on microglia through JNK/AP-1/NF-&#954;B pathway inhibition and Nrf2/HO-1 pathway activation

    Effect of Resveratrol-Enriched Rice on Skin Inflammation and Pruritus in the NC/Nga Mouse Model of Atopic Dermatitis

    No full text
    Resveratrol-enriched rice (RR) was developed using genetic engineering to combine the properties of resveratrol and rice. To evaluate the effect of RR on pruritic skin inflammation in atopic dermatitis (AD)-like skin lesions, we used dinitrochlorobenzene (DNCB)-induced NC/Nga mice and an in vitro 3D skin model. Normal rice (NR), resveratrol, and RR were topically applied to mice dorsal skin, following which the dermatitis index and scratching frequency were calculated. Histological examination was performed by hematoxylin and eosin and immunohistochemistry staining of IL-31 level. The level of immunoglobulin E (IgE) and IL-31 in the serum was determined by enzyme-linked immunosorbent assay (ELISA). The cytotoxicity of RR and the expression levels of pro-inflammatory cytokines were also determined in cultured human keratinocytes and a 3D skin model. RR significantly reduced scratching frequency, decreased the dermatitis severity and trans-epidermal water loss (TEWL) and improved skin hydration in DNCB-induced NC/Nga mice. RR also significantly decreased serum IL-31 and IgE levels and suppressed the production of IL-6 in human keratinocytes and the 3D skin model. Our study indicates that the synergistic effect of rice and resveratrol manifested by the topical application of RR can serve as a potential alternative therapy for chronic skin inflammatory diseases such as AD

    Ulmus parvifolia Accelerates Skin Wound Healing by Regulating the Expression of MMPs and TGF-β

    No full text
    Ulmus parvifolia is one of the medicinal plants used traditionally for treatment of wounds. We intended to investigate the wound healing effect of the powder of Ulmus parvifolia (UP) root bark in a mouse wound healing model. We also determined the mechanisms of effects of U. parvifolia in skin and skin wound healing effects using a keratinocyte model. Animal experiments showed that the wound lesions in the mice decreased with 200 mesh U. parvifolia root bark powder and were significantly reduced with treatment by UP, compared with those treated with Ulmus macrocarpa (UM). Results from in vitro experiments also revealed that UP extract promoted the migration of human skin keratinocytes. UP powder treatment upregulated the expression of the matrix metalloproteinase-2 and -9 protein and significantly increased transforming growth factor (TGF)-&beta; levels. We confirmed that topical administration of the bark powder exerted a significant effect on skin wound healing by upregulating the expression of MMP and transforming growth factor-&beta;. Our study suggests that U. parvifolia may be a potential candidate for skin wound healing including epidermal skin rejuvenation

    Flavonoids Identified from Korean Scutellaria baicalensis Georgi Inhibit Inflammatory Signaling by Suppressing Activation of NF-κB and MAPK in RAW 264.7 Cells

    No full text
    Scutellaria baicalensis Georgi has been used as traditional medicine for treating inflammatory diseases, hepatitis, tumors, and diarrhea in Asia. Hence, we investigated the anti-inflammatory effect and determined the molecular mechanism of action of flavonoids isolated from Korean S. baicalensis G. in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine cytotoxicity of the flavonoids at various concentrations of 10, 40, 70, and 100 µg/mL. No cytotoxicity was observed in RAW 264.7 cells at these concentrations. Furthermore, the flavonoids decreased production of inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6, and tumor necrosis factor-alpha and inhibited phosphorylation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-induced RAW 264.7 cells. Moreover, to identify the differentially expressed proteins in RAW 264.7 cells of the control, LPS-treated, and flavonoid-treated groups, two-dimensional gel electrophoresis and mass spectrometry were conducted. The identified proteins were involved in the inflammatory response and included PRKA anchor protein and heat shock protein 70 kD. These findings suggest that the flavonoids isolated from S. baicalensis G. might have anti-inflammatory effects that regulate the expression of inflammatory mediators by inhibiting the NF-κB signaling pathway via the MAPK signaling pathway in RAW 264.7 cells
    corecore