3 research outputs found

    NbSe<sub>2</sub> Nanosheets/Nanorolls Obtained via Fast and Direct Aqueous Electrochemical Exfoliation for High-Capacity Lithium Storage

    Full text link
    Layered transition-metal dichalcogenides (LTMDs) in two-dimensional (2D) form are attractive for electrochemical energy storage, but research efforts in this realm have so far largely focused on the best-known members of such a family of materials, mainly MoS2, MoSe2, and WS2. To exploit the potential of further, currently less-studied 2D LTMDs, targeted methods for their production, preferably by cost-effective and sustainable means, as well as control over their nanomorphology, are highly desirable. Here, we report a quick and straightforward route for the preparation of 2D NbSe2 and other metallic 2D LTMDs that relies on delaminating their bulk parent solid under aqueous cathodic conditions. Unlike typical electrochemical exfoliation methods for 2D materials, which generally require an additional processing step (e.g., sonication) to complete delamination, the present electrolytic strategy yielded directly exfoliated nano-objects in a very short time (1ā€“2 min) and with significant yields (āˆ¼16 wt %). Moreover, the dominant morphology of the exfoliated 2D NbSe2 products could be tuned between rolled-up nanosheets (nanorolls) and unfolded nanosheets, depending on the solvent where the nano-objects were dispersed (water or isopropanol). This rather unusual delamination behavior of NbSe2 was explored and concluded to occur via a redox mechanism that involves some degree of hydrolytic oxidation of the material triggered by the cathodic treatment. The delamination strategy could be extended to other metallic LTMDs, such as NbS2 and VSe2. When tested toward electrochemical lithium storage, electrodes based on the exfoliated NbSe2 products delivered very high capacity values, up to 750ā€“800 mA h gā€“1 at 0.5 A gā€“1, where the positive effect of the nanoroll morphology, associated to increased accessibility of the lithium storage sites, was made apparent. Overall, these results are expected to expand the availability of fit-for-purpose 2D LTMDs by resorting to simple and expeditious production strategies of low environmental impact

    Consequences of Nitrogen Doping and Oxygen Enrichment on Titanium Local Order and Photocatalytic Performance of TiO<sub>2</sub> Anatase

    Full text link
    Extended X-ray absorption fine structure (EXAFS) investigation of the oxygen-rich titania formed via the thermal treatment of N-doped TiO<sub>2</sub> has revealed that the removal of N-dopants is responsible for the creation of defect sites in the titanium environment, thus triggering at high temperatures (500ā€“800 Ā°C) the capture of atmospheric oxygen followed by its diffusion toward the vacant sites and formation of interstitial oxygen species. The effect of the dopants on Ti coordination number and Tiā€“O<sub>int</sub> and Tiā€“N<sub>int</sub> bond distances has been estimated. The photocatalytic <i>p</i>-cresol degradation tests have demonstrated that the interband states formed by the N-dopants contribute to a greater extent to the visible-light activity than the oxygen interstitials do. However, under the UV irradiation the oxygen-rich titania shows higher efficiency in the pollutant degradation, while the N-dopants in Nā€“TiO<sub>2</sub> play the role of recombination sites. The presence of the surface nitrogen species in TiO<sub>2</sub> is highly beneficial for the application in partial photooxidation reactions, where Nā€“TiO<sub>2</sub> demonstrates a superior selectivity of 5-hydroxymethyl furfural (HMF) oxidation to 2,5-furandicarboxĀ­aldehyde (FDC). Thus, this work underlines the importance of a rational design of nonmetal doped titania for photocatalytic degradation and partial oxidation applications, and it establishes the role of bulk defects and surface dopants on the TiO<sub>2</sub> photooxidation performance

    Impact of Covalent Functionalization on the Aqueous Processability, Catalytic Activity, and Biocompatibility of Chemically Exfoliated MoS<sub>2</sub> Nanosheets

    Full text link
    Chemically exfoliated MoS<sub>2</sub> (ce-MoS<sub>2</sub>) has emerged in recent years as an attractive two-dimensional material for use in relevant technological applications, but fully exploiting its potential and versatility will most probably require the deployment of appropriate chemical modification strategies. Here, we demonstrate that extensive covalent functionalization of ce-MoS<sub>2</sub> nanosheets with acetic acid groups (āˆ¼0.4 groups grafted per MoS<sub>2</sub> unit) based on the organoiodide chemistry brings a number of benefits in terms of their processability and functionality. Specifically, the acetic acid-functionalized nanosheets were furnished with long-term (>6 months) colloidal stability in aqueous medium at relatively high concentrations, exhibited a markedly improved temporal retention of catalytic activity toward the reduction of nitroarenes, and could be more effectively coupled with silver nanoparticles to form hybrid nanostructures. Furthermore, in vitro cell proliferation tests carried out with murine fibroblasts suggested that the chemical derivatization had a positive effect on the biocompatibility of ce-MoS<sub>2</sub>. A hydrothermal annealing procedure was also implemented to promote the structural conversion of the functionalized nanosheets from the 1T phase that was induced during the chemical exfoliation step to the original 2H phase of the starting bulk material, while retaining at the same time the aqueous colloidal stability afforded by the presence of the acetic acid groups. Overall, by highlighting the benefits of this type of chemical derivatization, the present work should contribute to strengthen the position of ce-MoS<sub>2</sub> as a two-dimensional material of significant practical utility
    corecore