45 research outputs found
The ETO2 transcriptional cofactor maintains acute leukemia by driving a MYB/EP300‐dependent stemness program
Transcriptional cofactors of the ETO family are recurrent fusion partners in acute leukemia. We characterized the ETO2 regulome by integrating transcriptomic and chromatin binding analyses in human erythroleukemia xenografts and controlled ETO2 depletion models. We demonstrate that beyond its well‐established repressive activity, ETO2 directly activates transcription of MYB, among other genes. The ETO2‐activated signature is associated with a poorer prognosis in erythroleukemia but also in other acute myeloid and lymphoid leukemia subtypes. Mechanistically, ETO2 colocalizes with EP300 and MYB at enhancers supporting the existence of an ETO2/MYB feedforward transcription activation loop (e.g., on MYB itself). Both small‐molecule and PROTAC‐mediated inhibition of EP300 acetyltransferases strongly reduced ETO2 protein, chromatin binding, and ETO2‐activated transcripts. Taken together, our data show that ETO2 positively enforces a leukemia maintenance program that is mediated in part by the MYB transcription factor and that relies on acetyltransferase cofactors to stabilize ETO2 scaffolding activity
miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by megakaryocyte (MK) hyperplasia, bone marrow fibrosis, and abnormal stem cell trafficking. PMF may be associated with somatic mutations in JAK2, MPL, or CALR. Previous studies have shown that abnormal MKs play a central role in the pathophysiology of PMF. In this work, we studied both gene and microRNA (miRNA) expression profiles in CD34(+) cells from PMF patients. We identified several biomarkers and putative molecular targets such as FGR, LCN2, and OLFM4. By means of miRNA-gene expression integrative analysis, we found different regulatory networks involved in the dysregulation of transcriptional control and chromatin remodeling. In particular, we identified a network gathering several miRNAs with oncogenic potential (eg, miR-155-5p) and targeted genes whose abnormal function has been previously associated with myeloid neoplasms, including JARID2, NR4A3, CDC42, and HMGB3. Because the validation of miRNA-target interactions unveiled JARID2/miR-155-5p as the strongest relationship in the network, we studied the function of this axis in normal and PMF CD34(+) cells. We showed that JARID2 downregulation mediated by miR-155-5p overexpression leads to increased in vitro formation of CD41(+) MK precursors. These findings suggest that overexpression of miR-155-5p and the resulting downregulation of JARID2 may contribute to MK hyperplasia in PMF
Identification of Human SARS-CoV-2 Monoclonal Antibodies from Convalescent Patients Using EBV Immortalization
We report the isolation of two human IgG1k monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike protein. These mAbs were isolated from two donors who had recovered from COVID-19 infection during the first pandemic peak in the Lombardy region of Italy, the first European and initially most affected region in March 2020. We used the method of EBV immortalization of purified memory B cells and supernatant screening with a spike S1/2 assay for mAb isolation. This method allowed rapid isolation of clones, with one donor showing about 7% of clones positive against spike protein, whereas the other donor did not produce positive clones out of 91 tested. RNA was extracted from positive clones 39–47 days post-EBV infection, allowing VH and VL sequencing. The same clones were sequenced again after a further 100 days in culture, showing that no mutation had taken place during in vitro expansion. The B cell clones could be expanded in culture for more than 4 months after EBV immortalization and secreted the antibodies stably during that time, allowing to purify mg quantities of each mAb for functional assays without generating recombinant proteins. Unfortunately, neither mAb had significant neutralizing activity in a virus infection assay with several different SARS-CoV-2 isolates. The antibody sequences are made freely available
Immature Immunoglobulin Gene Rearrangements Are Recurrent in B Precursor Adult Acute Lymphoblastic Leukemia Carrying TP53 Molecular Alterations
Here, we describe the immunoglobulin and T cell receptor (Ig/TCR) molecular rearrangements identified as a leukemic clone hallmark for minimal residual disease assessment in relation to TP53 mutational status in 171 Ph-negative Acute Lymphoblastic Leukemia (ALL) adult patients at diagnosis. The presence of a TP53 alterations, which represents a marker of poor prognosis, was strictly correlated with an immature DH/JH rearrangement of the immunoglobulin receptor (p < 0.0001). Furthermore, TP53-mutated patients were classified as pro-B ALL more frequently than their wild-type counterpart (46% vs. 25%, p = 0.05). Although the reasons for the co-presence of immature Ig rearrangements and TP53 mutation need to be clarified, this can suggest that the alteration in TP53 is acquired at an early stage of B-cell maturation or even at the level of pre-leukemic transformation