4 research outputs found

    Elucidating Drought Stress Tolerance in European Oaks Through Cross-Species Transcriptomics

    No full text
    The impact of climate change that comes with a dramatic increase of long periods of extreme summer drought associated with heat is a fundamental challenge for European forests. As a result, forests are expected to shift their distribution patterns toward north-east, which may lead to a dramatic loss in value of European forest land. Consequently, unraveling key processes that underlie drought stress tolerance is not only of great scientific but also of utmost economic importance for forests to withstand future heat and drought wave scenarios. To reveal drought stress-related molecular patterns we applied cross-species comparative transcriptomics of three major European oak species: the less tolerant deciduous pedunculate oak (Quercus robur), the deciduous but quite tolerant pubescent oak (Q. pubescens), and the very tolerant evergreen holm oak (Q. ilex). We found 415, 79, and 222 differentially expressed genes during drought stress in Q. robur, Q. pubescens, and Q. ilex, respectively, indicating species-specific response mechanisms. Further, by comparative orthologous gene family analysis, 517 orthologous genes could be characterized that may play an important role in drought stress adaptation on the genus level. New regulatory candidate pathways and genes in the context of drought stress response were identified, highlighting the importance of the antioxidant capacity, the mitochondrial respiration machinery, the lignification of the water transport system, and the suppression of drought-induced senescence – providing a valuable knowledge base that could be integrated in breeding programs in the face of climate change

    Elucidating drought stress tolerance in european oaks through cross-species transcriptomics

    No full text
    The impact of climate change that comes with a dramatic increase of long periods of extreme summer drought associated with heat is a fundamental challenge for European forests. As a result, forests are expected to shift their distribution patterns toward north-east, which may lead to a dramatic loss in value of European forest land. Consequently, unraveling key processes that underlie drought stress tolerance is not only of great scientific but also of utmost economic importance for forests to withstand future heat and drought wave scenarios. To reveal drought stress-related molecular patterns we applied cross-species comparative transcriptomics of three major European oak species: the less tolerant deciduous pedunculate oak (Quercus robur), the deciduous but quite tolerant pubescent oak (Q. pubescens), and the very tolerant evergreen holm oak (Q. ilex). We found 415, 79, and 222 differentially expressed genes during drought stress in Q. robur, Q. pubescens, and Q. ilex, respectively, indicating species-specific response mechanisms. Further, by comparative orthologous gene family analysis, 517 orthologous genes could be characterized that may play an important role in drought stress adaptation on the genus level. New regulatory candidate pathways and genes in the context of drought stress response were identified, highlighting the importance of the antioxidant capacity, the mitochondrial respiration machinery, the lignification of the water transport system, and the suppression of drought-induced senescence - providing a valuable knowledge base that could be integrated in breeding programs in the face of climate change

    Unraveling metabolic patterns and molecular mechanisms underlying storability in sugar beet

    No full text
    BACKGROUND: Sugar beet is an important crop for sugar production. Sugar beet roots are stored up to several weeks post-harvest waiting for processing in the sugar factories. During this time, sucrose loss and invert sugar accumulation decreases the final yield and processing quality. To improve storability, more information about post-harvest metabolism is required. We investigated primary and secondary metabolites of six sugar beet varieties during storage. Based on their variety-specific sucrose loss, three storage classes representing well, moderate, and bad storability were compared. Furthermore, metabolic data were visualized together with transcriptome data to identify potential mechanisms involved in the storage process. RESULTS: We found that sugar beet varieties that performed well during storage have higher pools of 15 free amino acids which were already observable at harvest. This storage class-specific feature is visible at harvest as well as after 13 weeks of storage. The profile of most of the detected organic acids and semi-polar metabolites changed during storage. Only pyroglutamic acid and two semi-polar metabolites, including ferulic acid, show higher levels in well storable varieties before and/or after 13 weeks of storage. The combinatorial OMICs approach revealed that well storable varieties had increased downregulation of genes involved in amino acid degradation before and after 13 weeks of storage. Furthermore, we found that most of the differentially genes involved in protein degradation were downregulated in well storable varieties at both timepoints, before and after 13 weeks of storage. CONCLUSIONS: Our results indicate that increased levels of 15 free amino acids, pyroglutamic acid and two semi-polar compounds, including ferulic acid, were associated with a better storability of sugar beet taproots. Predictive metabolic patterns were already apparent at harvest. With respect to elongated storage, we highlighted the role of free amino acids in the taproot. Using complementary transcriptomic data, we could identify potential underlying mechanisms of sugar beet storability. These include the downregulation of genes for amino acid degradation and metabolism as well as a suppressed proteolysis in the well storable varieties
    corecore