18 research outputs found

    ITALIAN CANCER FIGURES - REPORT 2015: The burden of rare cancers in Italy = I TUMORI IN ITALIA - RAPPORTO 2015: I tumori rari in Italia

    Get PDF
    OBJECTIVES: This collaborative study, based on data collected by the network of Italian Cancer Registries (AIRTUM), describes the burden of rare cancers in Italy. Estimated number of new rare cancer cases yearly diagnosed (incidence), proportion of patients alive after diagnosis (survival), and estimated number of people still alive after a new cancer diagnosis (prevalence) are provided for about 200 different cancer entities. MATERIALS AND METHODS: Data herein presented were provided by AIRTUM population- based cancer registries (CRs), covering nowadays 52% of the Italian population. This monograph uses the AIRTUM database (January 2015), which includes all malignant cancer cases diagnosed between 1976 and 2010. All cases are coded according to the International Classification of Diseases for Oncology (ICD-O-3). Data underwent standard quality checks (described in the AIRTUM data management protocol) and were checked against rare-cancer specific quality indicators proposed and published by RARECARE and HAEMACARE (www.rarecarenet.eu; www.haemacare.eu). The definition and list of rare cancers proposed by the RARECAREnet "Information Network on Rare Cancers" project were adopted: rare cancers are entities (defined as a combination of topographical and morphological codes of the ICD-O-3) having an incidence rate of less than 6 per 100,000 per year in the European population. This monograph presents 198 rare cancers grouped in 14 major groups. Crude incidence rates were estimated as the number of all new cancers occurring in 2000-2010 divided by the overall population at risk, for males and females (also for gender-specific tumours).The proportion of rare cancers out of the total cancers (rare and common) by site was also calculated. Incidence rates by sex and age are reported. The expected number of new cases in 2015 in Italy was estimated assuming the incidence in Italy to be the same as in the AIRTUM area. One- and 5-year relative survival estimates of cases aged 0-99 years diagnosed between 2000 and 2008 in the AIRTUM database, and followed up to 31 December 2009, were calculated using complete cohort survival analysis. To estimate the observed prevalence in Italy, incidence and follow-up data from 11 CRs for the period 1992-2006 were used, with a prevalence index date of 1 January 2007. Observed prevalence in the general population was disentangled by time prior to the reference date (≤2 years, 2-5 years, ≤15 years). To calculate the complete prevalence proportion at 1 January 2007 in Italy, the 15-year observed prevalence was corrected by the completeness index, in order to account for those cancer survivors diagnosed before the cancer registry activity started. The completeness index by cancer and age was obtained by means of statistical regression models, using incidence and survival data available in the European RARECAREnet data. RESULTS: In total, 339,403 tumours were included in the incidence analysis. The annual incidence rate (IR) of all 198 rare cancers in the period 2000-2010 was 147 per 100,000 per year, corresponding to about 89,000 new diagnoses in Italy each year, accounting for 25% of all cancer. Five cancers, rare at European level, were not rare in Italy because their IR was higher than 6 per 100,000; these tumours were: diffuse large B-cell lymphoma and squamous cell carcinoma of larynx (whose IRs in Italy were 7 per 100,000), multiple myeloma (IR: 8 per 100,000), hepatocellular carcinoma (IR: 9 per 100,000) and carcinoma of thyroid gland (IR: 14 per 100,000). Among the remaining 193 rare cancers, more than two thirds (No. 139) had an annual IR <0.5 per 100,000, accounting for about 7,100 new cancers cases; for 25 cancer types, the IR ranged between 0.5 and 1 per 100,000, accounting for about 10,000 new diagnoses; while for 29 cancer types the IR was between 1 and 6 per 100,000, accounting for about 41,000 new cancer cases. Among all rare cancers diagnosed in Italy, 7% were rare haematological diseases (IR: 41 per 100,000), 18% were solid rare cancers. Among the latter, the rare epithelial tumours of the digestive system were the most common (23%, IR: 26 per 100,000), followed by epithelial tumours of head and neck (17%, IR: 19) and rare cancers of the female genital system (17%, IR: 17), endocrine tumours (13% including thyroid carcinomas and less than 1% with an IR of 0.4 excluding thyroid carcinomas), sarcomas (8%, IR: 9 per 100,000), central nervous system tumours and rare epithelial tumours of the thoracic cavity (5%with an IR equal to 6 and 5 per 100,000, respectively). The remaining (rare male genital tumours, IR: 4 per 100,000; tumours of eye, IR: 0.7 per 100,000; neuroendocrine tumours, IR: 4 per 100,000; embryonal tumours, IR: 0.4 per 100,000; rare skin tumours and malignant melanoma of mucosae, IR: 0.8 per 100,000) each constituted <4% of all solid rare cancers. Patients with rare cancers were on average younger than those with common cancers. Essentially, all childhood cancers were rare, while after age 40 years, the common cancers (breast, prostate, colon, rectum, and lung) became increasingly more frequent. For 254,821 rare cancers diagnosed in 2000-2008, 5-year RS was on average 55%, lower than the corresponding figures for patients with common cancers (68%). RS was lower for rare cancers than for common cancers at 1 year and continued to diverge up to 3 years, while the gap remained constant from 3 to 5 years after diagnosis. For rare and common cancers, survival decreased with increasing age. Five-year RS was similar and high for both rare and common cancers up to 54 years; it decreased with age, especially after 54 years, with the elderly (75+ years) having a 37% and 20% lower survival than those aged 55-64 years for rare and common cancers, respectively. We estimated that about 900,000 people were alive in Italy with a previous diagnosis of a rare cancer in 2010 (prevalence). The highest prevalence was observed for rare haematological diseases (278 per 100,000) and rare tumours of the female genital system (265 per 100,000). Very low prevalence (<10 prt 100,000) was observed for rare epithelial skin cancers, for rare epithelial tumours of the digestive system and rare epithelial tumours of the thoracic cavity. COMMENTS: One in four cancers cases diagnosed in Italy is a rare cancer, in agreement with estimates of 24% calculated in Europe overall. In Italy, the group of all rare cancers combined, include 5 cancer types with an IR>6 per 100,000 in Italy, in particular thyroid cancer (IR: 14 per 100,000).The exclusion of thyroid carcinoma from rare cancers reduces the proportion of them in Italy in 2010 to 22%. Differences in incidence across population can be due to the different distribution of risk factors (whether environmental, lifestyle, occupational, or genetic), heterogeneous diagnostic intensity activity, as well as different diagnostic capacity; moreover heterogeneity in accuracy of registration may determine some minor differences in the account of rare cancers. Rare cancers had worse prognosis than common cancers at 1, 3, and 5 years from diagnosis. Differences between rare and common cancers were small 1 year after diagnosis, but survival for rare cancers declined more markedly thereafter, consistent with the idea that treatments for rare cancers are less effective than those for common cancers. However, differences in stage at diagnosis could not be excluded, as 1- and 3-year RS for rare cancers was lower than the corresponding figures for common cancers. Moreover, rare cancers include many cancer entities with a bad prognosis (5-year RS <50%): cancer of head and neck, oesophagus, small intestine, ovary, brain, biliary tract, liver, pleura, multiple myeloma, acute myeloid and lymphatic leukaemia; in contrast, most common cancer cases are breast, prostate, and colorectal cancers, which have a good prognosis. The high prevalence observed for rare haematological diseases and rare tumours of the female genital system is due to their high incidence (the majority of haematological diseases are rare and gynaecological cancers added up to fairly high incidence rates) and relatively good prognosis. The low prevalence of rare epithelial tumours of the digestive system was due to the low survival rates of the majority of tumours included in this group (oesophagus, stomach, small intestine, pancreas, and liver), regardless of the high incidence rate of rare epithelial cancers of these sites. This AIRTUM study confirms that rare cancers are a major public health problem in Italy and provides quantitative estimations, for the first time in Italy, to a problem long known to exist. This monograph provides detailed epidemiologic indicators for almost 200 rare cancers, the majority of which (72%) are very rare (IR<0.5 per 100,000). These data are of major interest for different stakeholders. Health care planners can find useful information herein to properly plan and think of how to reorganise health care services. Researchers now have numbers to design clinical trials considering alternative study designs and statistical approaches. Population-based cancer registries with good quality data are the best source of information to describe the rare cancer burden in a population

    Pregnancy in Obese Mice Protects Selectively against Visceral Adiposity and Is Associated with Increased Adipocyte Estrogen Signalling

    Get PDF
    Maternal obesity is linked with increased adverse pregnancy outcomes for both mother and child. The metabolic impact of excessive fat within the context of pregnancy is not fully understood. We used a mouse model of high fat (HF) feeding to induce maternal obesity to identify adipose tissue-mediated mechanisms driving metabolic dysfunction in pregnant and non-pregnant obese mice. As expected, chronic HF-feeding for 12 weeks preceding pregnancy increased peripheral (subcutaneous) and visceral (mesenteric) fat mass. However, unexpectedly at late gestation (E18.5) HF-fed mice exhibited a remarkable normalization of visceral but not peripheral adiposity, with a 53% reduction in non-pregnant visceral fat mass expressed as a proportion of body weight (P<0.001). In contrast, in control animals, pregnancy had no effect on visceral fat mass proportion. Obesity exaggerated glucose intolerance at mid-pregnancy (E14.5). However by E18.5, there were no differences, in glucose tolerance between obese and control mice. Transcriptomic analysis of visceral fat from HF-fed dams at E18.5 revealed reduced expression of genes involved in de novo lipogenesis (diacylglycerol O-acyltransferase 2--Dgat2) and inflammation (chemokine C-C motif ligand 20--Ccl2) and upregulation of estrogen receptor α (ERα) compared to HF non pregnant. Attenuation of adipose inflammation was functionally confirmed by a 45% reduction of CD11b+CD11c+ adipose tissue macrophages (expressed as a proportion of all stromal vascular fraction cells) in HF pregnant compared to HF non pregnant animals (P<0.001). An ERα selective agonist suppressed both de novo lipogenesis and expression of lipogenic genes in adipocytes in vitro. These data show that, in a HF model of maternal obesity, late gestation is associated with amelioration of visceral fat hypertrophy, inflammation and glucose intolerance, and suggest that these effects are mediated in part by elevated visceral adipocyte ERα signaling

    Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth.

    Get PDF
    AbstractPremature babies are particularly vulnerable to brain injury. In this study we focus on cortical brain damage associated with long-term cognitive, behavioral, attentional or socialization deficits in children born preterm. Using a mouse model of preterm birth (PTB), we demonstrated that complement component C5a contributes to fetal cortical brain injury. Disruption of cortical dendritic and axonal cytoarchitecture was observed in PTB-mice. Fetuses deficient in C5aR (−/−) did not show cortical brain damage. Treatment with antibody anti-C5, that prevents generation of C5a, also prevented cortical fetal brain injury in PTB-mice. C5a also showed a detrimental effect on fetal cortical neuron development and survival in vitro. Increased glutamate release was observed in cortical neurons in culture exposed to C5a. Blockade of C5aR prevented glutamate increase and restored neurons dendritic and axonal growth and survival. Similarly, increased glutamate levels – measured by 1HMRS – were observed in vivo in PTB-fetuses compared to age-matched controls. The blockade of glutamate receptors prevented C5a-induced abnormal growth and increased cell death in isolated fetal cortical neurons. Simvastatin and pravastatin prevented cortical fetal brain developmental and metabolic abnormalities -in vivo and in vitro. Neuroprotective effects of statins were mediated by Akt/PKB signaling pathways. This study shows that complement activation plays a crucial role in cortical fetal brain injury in PTL and suggests that complement inhibitors and statins might be good therapeutic options to improve neonatal outcomes in preterm birth

    Pregnancy results in increased weight gain and selective changes in fat depots in HF-fed mice.

    No full text
    <p><b>A</b>. Weight during 12 weeks treatment of HF diet in HF mice and control diet in control animals (n = 19–30); <b>B</b>. Weight during pregnancy (n = 8–16), note that both control and HF-fed (obese) mice gained weight, that differences between the two groups were maintained throughout pregnancy but that differences between them were smaller by E18.5; <b>C</b>. subcutaneous fat weight in g/g of body fat (n = 8–16); <b>D</b>. mesenteric fat weight in g/g of body fat (n = 8–16), note there is no difference in the weight of this depot between control and HF-fed individuals at E18.5; Statistical analysis performed using two way ANOVA * = P≤0.05, ** = P≤0.01, *** = P≤0.001 comparing HF and relevant control.</p

    Array analysis of mesenteric fat depots from control and HF-fed obese mice using Spotfire Decision Site.

    No full text
    <p><b>A</b>. Log (base 2) ratios of gene expression intensities in pregnant and non-pregnant mice on the high fat and control diets. The y-axis shows the comparison of data from pregnant and non-pregnant mice regardless of diet. The x-axis compares high fat and control diets regardless of pregnancy status. Red spots represent genes that are significantly differentially expressed in pregnant mice on HF compared to control diet. Genes expressed below the arbitrary threshold (100) throughout the experiment were removed for clarity. Several genes of interest with higher expression in pregnant mice and on a high fat diet are marked and labelled. B. and C. Log (base 2) gene expression intensities in (<b>B</b>) Pregnant mice and (<b>C</b>) Non-pregnant mice on the high fat and control diets. For each group (pregnant or non pregnant), the y-axis shows the log2 expression in HF mice and the x-axis shows log2 expression in control mice. Red spots represent genes that are significantly differentially expressed in high fat diet compared to control diet for each pregnancy status. Several genes of interest discussed in the text are marked and labelled on graphs. Genes expressed below the arbitrary threshold (100) throughout the experiment were removed for clarity.</p

    Effect of HF diet and pregnancy on concentrations of adipokines in the circulation.

    No full text
    <p>Leptin (n = 8–15) and Adiponectin<sup>HMW</sup> (n = 8 in each group). Statistical analysis performed using two way ANOVA, comparisons between HF non pregnant and control non pregnant: <i>**</i> = P<0.01, <i>***</i> = P<0.001, comparisons between control pregnant and control non pregnant: ††† = P<0.001, comparisons between HF pregnant and HF non pregnant: §§ = P<0.01.</p

    Changes in expression of genes involved in retinol metabolism and inflammation.

    No full text
    <p><b>A</b>. expression of genes involved in retinol metabolism (<i>Rdh11</i> and <i>Rbp4</i> mRNA); <b>B</b>. Rbp4 circulating levels determined by Western blot in plasma; <b>C</b>. genes involved in inflammation (<i>Mcp1</i> and <i>TNFα</i> mRNA); <b>D</b>. Number of cells in stromal vascular fraction (SVF) and quantity of pro-inflammatory CD11b<sup>+</sup> and CD11c<sup>+</sup> double positive cells in gonadal fat determined by FACS analysis. Statistical analysis using two way ANOVA * = P<0.05, **P≤0.01, ***P≤0.001 (n = 8 in each group).</p

    Effect of HF diet and pregnancy on visceral adipose tissue estrogen receptor expression and circulating estrogen levels.

    No full text
    <p>A. <i>Esr1</i> (ERα) mRNA; B, C. Western analysis of ERα in visceral adipose tissue; D. Immunolocalisation of ERα to adipocyte nuclei (arrowheads) in mesenteric/visceral adipose tissue; E. Concentrations of estradiol in plasma. Statistical analysis calculated using two way ANOVA * = P<0.05, **P≤0.01, ***P≤0.001 (n = 8 in each group).</p
    corecore