7 research outputs found

    Exploiting environmental resonances to enhance qubit quality factors

    Full text link
    We discuss dephasing times for a two-level system (including bias) coupled to a damped harmonic oscillator. This system is realized in measurements on solid-state Josephson qubits. It can be mapped to a spin-boson model with a spectral function with an approximately Lorentzian resonance. We diagonalize the model by means of infinitesimal unitary transformations (flow equations), and calculate correlation functions, dephasing rates, and qubit quality factors. We find that these depend strongly on the environmental resonance frequency Ω\Omega; in particular, quality factors can be enhanced significantly by tuning Ω\Omega to lie below the qubit frequency Δ\Delta.Comment: 5 psges, 5 figure

    Nonequilibrium excitations in Ferromagnetic Nanoparticles

    Full text link
    In recent measurements of tunneling transport through individual ferromagnetic Co nanograins, Deshmukh, Gu\'eron, Ralph et al. \cite{mandar,gueron} (DGR) observed a tunneling spectrum with discrete resonances, whose spacing was much smaller than what one would expect from naive independent-electron estimates. In a previous publication, \cite{prl_kleff} we had suggested that this was a consequence of nonequilibrium excitations, and had proposed a ``minimal model'' for ferromagnetism in nanograins with a discrete excitation spectrum as a framework for analyzing the experimental data. In the present paper, we provide a detailed analysis of the properties of this model: We delineate which many-body electron states must be considered when constructing the tunneling spectrum, discuss various nonequilibrium scenarios and compare their results with the experimental data of Refs. \cite{mandar,gueron}. We show that a combination of nonequilibrium spin- and single-particle excitations can account for most of the observed features, in particular the abundance of resonances, the resonance spacing and the absence of Zeeman splitting.Comment: 13 pages, 10 figure

    A Model for Ferromagnetic Nanograins with Discrete Electronic States

    Full text link
    We propose a simple phenomenological model for an ultrasmall ferromagnetic grain, formulated in terms of the grain's discrete energy levels. We compare the model's predictions with recent measurements of the discrete tunneling spectrum through such a grain. The model can qualitatively account for the observed features if we assume (i) that the anisotropy energy varies among different eigenstates of one grain, and (ii) that nonequilibrium spin accumulation occurs.Comment: 4 pages, 2 figure

    Flow equation renormalization of a spin-boson model with a structured bath

    No full text
    We discuss the dynamics of a spin coupled to a damped harmonic oscillator. This system can be mapped to a spin-boson model with a structured bath, i.e. the spectral function of the bath has a resonance peak. We diagonalize the model by means of infinitesimal unitary transformations (flow equations), thereby decoupling the small quantum system from its environment, and calculate spin-spin correlation functions.Comment: 2 pages, to be published in Physica E, proceedings of the LT 200
    corecore