437 research outputs found

    Modifications of academic competences and intelligence in a university grade

    Get PDF
    The aim of the study was to analyze differences in intelligence, academic competences, and academic achievement by gender and academic course in sports science university students. To reach the study aim we analyzed in 267 (226 males and 41 females) first and last year students’ degree the variables of intelligence (Reasoning scale of the Primary Mental Abilities Test), academic achievement and self-perception of 40 academic competences (30 general competences and 10 specific competences). We found how last year degree students presented higher general and specific competences than first year students, not presenting differences in intelligence and academic achievement. Female students presented higher academic achievement and higher values in some general and specific competences but not in intelligence

    Low temperature magnetic properties of a Ni50Mn34In16 ball-milled metamagnetic shape memory alloy

    Get PDF
    [EN] The effect of the atomic disorder induced by ball-milling on the structure and the magnetic properties has been analyzed in a Ni50Mn34In16 metamagnetic shape memory alloy. The as-milled samples displayed an amorphous structure which crystallizes to a disordered B2 structure on annealing. On further annealing, several recovery processes leading to the austenitic L21 structure and the subsequent martensitic transformation are observed. As a result of the recovery processes, the magnetic order drastically varies concurrent with the long-range atomic order. In particular, the magnetism evolves from a frustrated magnetic state compatible with a canonical spin-glass, observed in the amorphous structure, to the well-developed ferromagnetic state.This work has been carried out with the financial support of the Spanish “Ministerio de Economía y Competitividad” and FEDER funding, projects no. MAT2012-37923 and MAT2015-65165-C2-R. I. Unzueta acknowledges financial support from the Basque Government Grant nos. IT-443-10 and PRE_2014_214

    Application of Sludge-Based Activated Carbons for the Effective Adsorption of Neonicotinoid Pesticides

    Get PDF
    The amount of sludge produced in wastewater treatment plants (WWTPs) has increased over the years, and the methods used to reduce this waste, such as incineration, agricultural use, or disposal in landfills, cause problems of secondary pollution. For this reason, it is necessary to find sustainable and low-cost solutions to manage this waste. Additionally, emerging and priority pollutants are attracting attention from the scientific community as they can generate health problems due to inadequate removal in conventional WWTPs. In this work, a pharmaceutical industry sludge was used as a precursor in the synthesis of four activated carbons (ACs) using different activating agents (ZnCl2, FeCl3∙6H2O, Fe(NO3)3∙9H2O, and Fe(SO4)3∙H2O), to be used for the removal by adsorption of three neonicotinoid pesticides included in latest EU Watch List (Decision 2018/840): acetamiprid (ACT), thiamethoxam (THM), and imidacloprid (IMD). The prepared ACs showed micro–mesoporous properties, obtaining relatively slow adsorption kinetics to reach equilibrium, but despite this, high values of adsorption capacity (qe) were obtained. For example, for AC-ZnCl2 (SBET = 558 m2/g), high adsorption capacities of qe = 128.9, 126.8, and 166.1 mg/g for ACT, THM, and IMD, respectively, were found. In most cases, the adsorption isotherms showed a multilayer profile, indicating an important contribution of the mesoporosity of the activated carbons in the adsorption process.Depto. de Ingeniería Química y de MaterialesFac. de Ciencias QuímicasTRUEComunidad de Madridpu

    Accuracy and Survival Outcomes after National Implementation of Sentinel Lymph Node Biopsy in Early Stage Endometrial Cancer

    Get PDF
    Accuracy; Sentinel lymph node biopsy; Endometrial cancerPrecisión; Biopsia del ganglio linfático centinela; Cáncer de endometrioPrecisió; Biòpsia del gangli limfàtic sentinella; Càncer d'endometriBackground Sentinel lymph node (SLN) biopsy has recently been accepted to evaluate nodal status in endometrial cancer at early stage, which is key to tailoring adjuvant treatments. Our aim was to evaluate the national implementation of SLN biopsy in terms of accuracy to detect nodal disease in a clinical setting and oncologic outcomes according to the volume of nodal disease. Patients and Methods A total of 29 Spanish centers participated in this retrospective, multicenter registry including patients with endometrial adenocarcinoma at preoperative early stage who had undergone SLN biopsy between 2015 and 2021. Each center collected data regarding demographic, clinical, histologic, therapeutic, and survival characteristics. Results A total of 892 patients were enrolled. After the surgery, 12.9% were suprastaged to FIGO 2009 stages III–IV and 108 patients (12.1%) had nodal involvement: 54.6% macrometastasis, 22.2% micrometastases, and 23.1% isolated tumor cells (ITC). Sensitivity of SLN biopsy was 93.7% and false negative rate was 6.2%. After a median follow up of 1.81 years, overall surivial and disease-free survival were significantly lower in patients who had macrometastases when compared with patients with negative nodes, micrometastases or ITC. Conclusions In our nationwide cohort we obtained high sensitivity of SLN biopsy to detect nodal disease. The oncologic outcomes of patients with negative nodes and low-volume disease were similar after tailoring adjuvant treatments. In total, 22% of patients with macrometastasis and 50% of patients with micrometastasis were at low risk of nodal metastasis according to their preoperative risk factors, revealing the importance of SLN biopsy in the surgical management of patients with early stage EC.Open Access Funding provided by Universitat Autonoma de Barcelona

    Enhanced TrkA signaling impairs basal forebrain-dependent behavior

    Get PDF
    Basal forebrain cholinergic neurons (BFCNs) modulate cognitive functions such as attention, learning and memory. The NGF/TrkA pathway plays an important role in the development and function of BFCNs, although two mouse models conditionally deleting TrkA expression in the central nervous system (CNS) have shown contradictory results. To shed light into this discrepancy, we used a mouse model with a gain-of-function in TrkA receptor signaling. Our results indicate that enhanced TrkA signaling did not alter hippocampal cholinergic innervation, general locomotion or anxiety-related behaviors, but it increases ChAT expression, the number of cholinergic neurons at early postnatal stages and, mutant mice showed impaired motor learning and memory functions. These data demonstrate that proper functioning of the cholinergic system in CNS requires a balanced NGF/TrkA signaling

    On the structure and stability of novel cationic DPPC liposomes doped with gemini surfactants

    Get PDF
    A novel formulation of cationic liposomes was studied by mixing dipalmitoylphosphatidylcholine (DPPC) with tetradecyltrimethylammonium bromide gemini surfactants with different alkane spacer groups lengths attached to their ammonium head-groups. The physicochemical characterization of the cationic liposomes was obtained by combining experimental results from differential scanning microcalorimetry (DSC) with molecular dynamic simulations, in order to understand their structural configuration. An adapted Ising model was used to interpret the results in terms of cooperativity of the phase transitions. The gemini surfactants partition into the lipid bilayer of DPPC liposomes, and the induced changes in colloidal stability and phase transition were analyzed in detail. The DPPC liposomes became positively charged upon gemini surfactant partition, showing increased colloidal stability. Our results show significant differences in structural configuration between gemini surfactants with short and long spacer lengths. While gemini with shorter spacers allocate within the lipid bilayer with both headgroups in the same layer, geminis with longer spacers unexpectedly intercalate in the lipid membrane in a particular zig-zag configuration, with each headgroup located at a different side of the bilayer, altering the coupling degree parameters of the membrane’s phase transition. The extraordinary increase of colloidal stability of DPPC liposomes with gemini surfactants at very low molar ratio and the possibility to tune the physicochemical properties of the membrane by control de spacer length of the geminis opens new possibilities for cationic liposomal formulations with potential applications in vaccines, drug/gene delivery or biosensingThis work was supported by the Spanish Research Agency (AEI) under Project PID2019-109517RB-I00. ERDF funds are also acknowledged. Facilities provided by the Galician Supercomputing Centre (CESGA) are also acknowledgedS

    Mechanically induced disorder and crystallization process in Ni-Mn-In ball-milled alloys

    Get PDF
    [EN] High mechanical deformation has been induced in a Ni-Mn-In metamagnetic shape memory alloy by means of ball milling. The evolution of both the martensitic transformation and the magnetic properties associated to the microstructural variations has been characterized. The as-milled nanometric particles display an amorphous structure with a frustrated magnetic state compatible with a canonical spin-glass. On heating, an abrupt crystallization process occurs around 500 K leading to a cubic B2 structure, which, in turn, does not show martensitic transformation. Modified Arrott plots point to competing long- and short-range magnetic couplings in the B2 structure. On further heating, a relaxation process takes place above 700 K concurrently with a B2-L21 atomic ordering, giving rise to an anomalous two-step thermal expansion. The combined effect of both processes makes possible the subsequent occurrence of a martensitic transformation, which takes place at the same temperature than in the bulk. The large relative-cooling-power linked to the magnetocaloric effect at the martensitic transformation in the annealed powder makes it interesting for practical applications of magnetic refrigeration at nanoscale.This work has been carried out with the financial support of the Spanish “Ministerio de Economía y Competitividad” (Projects number MAT2012-37923-C02 and MAT2015-65165-C2-R). We also acknowledge ILL and SpINS for beam time allocation (experiment CRG-2158). RCF acknowledges a Postdoctoral fellowship from the Univeridad Pública de Navarra (grant number: 1081/2015). JARV acknowledges CSIC for a JAEdoc contract. J. Pons is acknowledged for TEM observations

    Plasticity of cell proliferation in the retina of Austrolebias charrua fish under light and darkness conditions

    Get PDF
    Austrolebias annual fishes exhibit cell proliferation and neurogenesis throughout life. They withstand extreme environmental changes as their habitat dries out, pressuring nervous system to adapt. Their visual system is challenged to adjust as the water becomes turbid. Therefore, this study focused on how change in photic envi- ronment can lead to an increased cell proliferation in the retina. We administered 5-chloro-2′- deoxyuridine (CldU) and 5-iodo-2′-deoxyuridine (IdU) at different temporal windows to detect cell proliferation in natural light and permanent darkness. Stem/progenitor cells were recognized as IdU+/CldU+ nuclei co-labeled with Sox2, Pax6 or BLBP found in the ciliary marginal zone (CMZ). The expression pattern of BLBP + glial cells and ultrastructural analysis indicates that CMZ has different cell progenitors. In darkness, the number of dividing cells significantly increased, compared to light conditions. Surprisingly, CMZ IdU+/CldU + cell number was similar under light and darkness, suggesting a stable pool of stem/progenitor cells possibly responsible for retinal growth. Therefore, darkness stimulated cell progenitors outside the CMZ, where Müller glia play a crucial role to generate rod precursors and other cell types that might integrate rod-dependent circuits to allow darkness adaptation. Thus, the Austrolebias fish retina shows great plasticity, with cell proliferation rates significantly higher than that of brain visual areas

    Viscoelastic characterization of parasagittal bridging veins and implications for traumatic brain injury: a pilot study

    Get PDF
    Many previous studies on the mechanical properties of Parasagittal Bridging Veins (PSBVs) found that strain rate had a significant effect on some mechanical properties, but did not extensively study the viscoelastic effects, which are difficult to detect with uniaxial simple tensile tests. In this study, relaxation tests and tests under cyclic loading were performed, and it was found that PSBVs do indeed exhibit clear viscoelastic effects. In addition, a complete viscoelastic model for the PSBVs is proposed and data from relaxation, cyclic load and load-unload tests for triangular loads are used to find reference values that characterize the viscoelastic behavior of the PSBVs. Although such models have been proposed for other types of blood vessels, this is the first study that clearly demonstrates the existence of viscoelastic effects from an experimental point of view and also proposes a specific model to explain the data obtained. Finally, this study provides reference values for the usual viscoelastic properties, which would allow more accurate numerical simulation of PSBVs by means of computational models.Peer ReviewedPostprint (published version

    Childhood B-Cell Preleukemia Mouse Modeling

    Get PDF
    Leukemia is the most usual childhood cancer, and B-cell acute lymphoblastic leukemia (B-ALL) is its most common presentation. It has been proposed that pediatric leukemogenesis occurs through a “multi-step” or “multi-hit” mechanism that includes both in utero and postnatal steps. Many childhood leukemia-initiating events, such as chromosomal translocations, originate in utero, and studies so far suggest that these “first-hits” occur at a far higher frequency than the incidence of childhood leukemia itself. The reason why only a small percentage of the children born with such preleukemic “hits” will develop full-blown leukemia is still a mystery. In order to better understand childhood leukemia, mouse modeling is essential, but only if the multistage process of leukemia can be recapitulated in the model. Therefore, mouse models naturally reproducing the “multi-step” process of childhood B-ALL will be essential to identify environmental or other factors that are directly linked to increased risk of disease.Research in CV-D group has been funded by Instituto de Salud Carlos III (ISCIII), through a “Miguel Servet Grant” (CPII19/00024-AES 2017–2020); co-funded by the European Union. Research in IS-G group is partially supported by FEDER and by SAF2015-64420-R MINECO/FEDER, UE, RTI2018-093314-B-I00 MCIU/AEI/FEDER, UE, by PID2021-122185OB-I00 MCIU/AEI/FEDER, UE, and by Junta de Castilla y León (UIC-017, CSI001U16, CSI234P18, and CSI144P20). IS-G have been supported by the Fundacion Unoentrecienmil (CUNINA project). CC and IS-G have been supported by the Fundación Científica de la Asociación Española contra el Cáncer (PRYCO211305SANC). Research at CC’s laboratory was partially supported by Ministerio de Ciencia e Innovación/AEI/FEDER (PID2021-122787OB-I00), FEDER MINECO (SAF2017-83061-R), the “Fundación Ramón Areces” and a Research Contract with the “Fundación Síndrome de Wolf-Hirschhorn o 4p-”. Institutional grants from the “Fundación Ramón Areces” and “Banco de Santander” to the CBMSO are also acknowledged. J.M.-C. is the recipient of a UAM FPU fellowship. AC-G (CSI067-18) and MI-H (CSI021-19) are supported by FSE-Conserjería de Educación de la Junta de Castilla y León 2019 and 2020 (ESF—European Social Fund) fellowship, respectively. SA-A is supported by an Ayuda para Contratos predoctorales para la formación de doctores (PRE2019-088887). L.S. is supported by a scholarship from University of Salamanca co-financed by Banco Santander and ESF
    corecore