5 research outputs found

    Melatonin as a Potential Approach to Anxiety Treatment

    No full text
    Anxiety disorders are the most common mental diseases. Anxiety and the associated physical symptoms may disturb social and occupational life and increase the risk of somatic diseases. The pathophysiology of anxiety development is complex and involves alterations in stress hormone production, neurosignaling pathways or free radical production. The various manifestations of anxiety, its complex pathophysiological background and the side effects of available treatments underlie the quest for constantly seeking therapies for these conditions. Melatonin, an indolamine produced in the pineal gland and released into the blood on a nightly basis, has been demonstrated to exert anxiolytic action in animal experiments and different clinical conditions. This hormone influences a number of physiological actions either via specific melatonin receptors or by receptor-independent pleiotropic effects. The underlying pathomechanism of melatonin’s benefit in anxiety may reside in its sympatholytic action, interaction with the renin–angiotensin and glucocorticoid systems, modulation of interneuronal signaling and its extraordinary antioxidant and radical scavenging nature. Of importance, the concentration of this indolamine is significantly higher in cerebrospinal fluid than in the blood. Thus, ensuring sufficient melatonin production by reducing light pollution, which suppresses melatonin levels, may represent an endogenous neuroprotective and anxiolytic treatment. Since melatonin is freely available, economically undemanding and has limited side effects, it may be considered an additional or alternative treatment for various conditions associated with anxiety

    Effect of Ivabradine on a Hypertensive Heart and the Renin-Angiotensin-Aldosterone System in L-NAME-Induced Hypertension

    No full text
    Ivabradine, the selective inhibitor of the If current in the sinoatrial node, exerts cardiovascular protection by its bradycardic effect and potentially pleiotropic actions. However, there is a shortage of data regarding ivabradine’s interaction with the renin-angiotensin-aldosterone system (RAAS). This study investigated whether ivabradine is able to protect a hypertensive heart in the model of L-NAME-induced hypertension and to interfere with the RAAS. Four groups (n = 10/group) of adult male Wistar rats were treated as follows for four weeks: control, ivabradine (10 mg/kg/day), L-NAME (40 mg/kg/day), and L-NAME plus ivabradine. L-NAME administration increased systolic blood pressure (SBP) and left ventricular (LV) weight, enhanced hydroxyproline concentration in the LV, and deteriorated the systolic and diastolic LV function. Ivabradine reduced heart rate (HR) and SBP, and improved the LV function. The serum concentrations of angiotensin Ang 1–8 (Ang II), Ang 1–5, Ang 1–7, Ang 1–10, Ang 2–8, and Ang 3–8 were decreased in the L-NAME group and ivabradine did not modify them. The serum concentration of aldosterone and the aldosterone/Ang II ratio were enhanced by L-NAME and ivabradine reduced these changes. We conclude that ivabradine improved the LV function of the hypertensive heart in L-NAME-induced hypertension. The protective effect of ivabradine might have been associated with the reduction of the aldosterone level

    Sacubitril/Valsartan and Ivabradine Attenuate Left Ventricular Remodelling and Dysfunction in Spontaneously Hypertensive Rats: Different Interactions with the Renin–Angiotensin–Aldosterone System

    No full text
    This study investigated whether sacubitril/valsartan and ivabradine are able to prevent left ventricular (LV) fibrotic remodelling and dysfunction in a rat experimental model of spontaneous hypertension (spontaneously hypertensive rats, SHRs) and whether this potential protection is associated with RAAS alterations. Five groups of three-month-old male Wistar rats and SHRs were treated for six weeks as follows: untreated Wistar controls, Wistar plus sacubitril/valsartan, SHR, SHR plus sacubitril/valsartan, and SHR plus ivabradine. The SHRs developed a systolic blood pressure (SBP) increase, LV hypertrophy and fibrosis, and LV systolic and diastolic dysfunction. However, no changes in serum RAAS were observed in SHRs compared with the controls. Elevated SBP in SHRs was decreased by sacubitril/valsartan but not by ivabradine, and only sacubitril/valsartan attenuated LV hypertrophy. Both sacubitril/valsartan and ivabradine reduced LV collagen content and attenuated LV systolic and diastolic dysfunction. Sacubitril/valsartan increased the serum levels of angiotensin (Ang) II, Ang III, Ang IV, Ang 1-5, Ang 1-7, and aldosterone, while ivabradine did not affect the RAAS. We conclude that the SHR is a normal-to-low serum RAAS model of experimental hypertension. While the protection of the hypertensive heart in SHRs by sacubitril/valsartan may be related to an Ang II blockade and the protective Ang 1-7, the benefits of ivabradine were not associated with RAAS modulation

    Effect of Melatonin on the Renin-Angiotensin-Aldosterone System in l-NAME-Induced Hypertension

    No full text
    The renin-angiotensin-aldosterone system (RAAS) is a dominant player in several cardiovascular pathologies. This study investigated whether alterations induced by l-NAME, (NLG)-nitro-l-arginine methyl ester, a nitric oxide synthase inhibitor, and the protective effect of melatonin are associated with changes in the RAAS. Four groups of 3-month-old male Wistar rats (n = 10) were treated as follows for four weeks: untreated controls, rats treated with melatonin (10 mg/kg/day), rats treated with l-NAME (40 mg/kg/day), and rats treated with l-NAME + melatonin. l-NAME administration led to hypertension and left ventricular (LV) fibrosis in terms of enhancement of soluble, insoluble and total collagen concentration and content. Melatonin reduced systolic blood pressure enhancement and lowered the concentration and content of insoluble and total collagen in the LV. The serum concentration of angiotensin (Ang) 1–8 (Ang II) and its downstream metabolites were reduced in the l-NAME group and remained unaltered by melatonin. The serum aldosterone level and its ratio to Ang II (AA2-ratio) were increased in the l-NAME group without being modified by melatonin. We conclude that l-NAME-hypertension is associated with reduced level of Ang II and its downstream metabolites and increased aldosterone concentration and AA2-ratio. Melatonin exerts its protective effect in l-NAME-induced hypertension without affecting RAAS

    Lactacystin-Induced Model of Hypertension in Rats: Effects of Melatonin and Captopril

    No full text
    Lactacystin is a proteasome inhibitor that interferes with several factors involved in heart remodelling. The aim of this study was to investigate whether the chronic administration of lactacystin induces hypertension and heart remodelling and whether these changes can be modified by captopril or melatonin. In addition, the lactacystin-model was compared with NG-nitro-l-arginine-methyl ester (L-NAME)- and continuous light-induced hypertension. Six groups of three-month-old male Wistar rats (11 per group) were treated for six weeks as follows: control (vehicle), L-NAME (40 mg/kg/day), continuous light (24 h/day), lactacystin (5 mg/kg/day) alone, and lactacystin with captopril (100 mg/kg/day), or melatonin (10 mg/kg/day). Lactacystin treatment increased systolic blood pressure (SBP) and induced fibrosis of the left ventricle (LV), as observed in L-NAME-hypertension and continuous light-hypertension. LV weight and the cross-sectional area of the aorta were increased only in L-NAME-induced hypertension. The level of oxidative load was preserved or reduced in all three models of hypertension. Nitric oxide synthase (NOS) activity in the LV and kidney was unchanged in the lactacystin group. Nuclear factor-kappa B (NF-κB) protein expression in the LV was increased in all treated groups in the cytoplasm, however, in neither group in the nucleus. Although melatonin had no effect on SBP, only this indolamine (but not captopril) reduced the concentration of insoluble and total collagen in the LV and stimulated the NO-pathway in the lactacystin group. We conclude that chronic administration of lactacystin represents a novel model of hypertension with collagenous rebuilding of the LV, convenient for testing antihypertensive drugs or agents exerting a cardiovascular benefit beyond blood pressure reduction
    corecore