187 research outputs found
Effect of PAN-based and pitch-based carbon fibres on microstructure and properties of continuous Cf/ZrB2-SiC UHTCMCs
In this paper the microstructure and mechanical properties of two different Cf/ZrB2-SiC composites reinforced with continuous PyC coated PAN-derived fibres or uncoated pitch-derived fibres were compared. Pitch-derived carbon fibres showed a lower degree of reaction with the matrix phase during sintering compared to PyC/PAN-derived fibres. The reason lies in the different microstructure of the carbon. The presence of a coating for PAN-derived fibres was found to be essential to limit the reaction at the fibre/matrix interface during SPS. However, coated bundles were more difficult to infiltrate, resulting in a less homogeneous microstructure. As far as the mechanical properties are concerned, specimens reinforced with coated PAN-derived fibres provided higher strengths and damage tolerance than uncoated pitch-derived fibres, due to the higher degree of fibre pull-out. On the other hand, the weaker fibre/matrix interface resulted in lower interlaminar shear, off-axis strength and ablation resistance
Properties of large scale ultra-high temperature ceramic matrix composites made by filament winding and spark plasma sintering
In this paper, for the first time, we report the manufacturing and characterization of large UHTCMCs discs, made of a ZrB2/SiC matrix reinforced with PyC-coated PAN-based carbon fibres. This work was the result of a long term collaboration between different institutions and shows how it is possible to scale-up the production process of UHTCMCs for the fabrication of large components. 150 mm large discs were produced by filament winding and consolidated by spark plasma sintering and specimens were machined to test a large set of material properties at room and elevated temperature (up to 1800 °C). The extensive characterization revealed a new material with mechanical behaviour similar to CMCs, but with intrinsic higher thermal stability. Furthermore, the scale-up demonstrated in this work increases the appeal of UHTCMCs in sectors such as aerospace, where severe operating conditions limit the application of conventional materials
- …