4 research outputs found

    Vanadium Complexes of the N(CH2CH2S)33- and O(CH2CH2S)22- Ligands with Coligands Relevant to Nitrogen Fixation Processes

    No full text
    Vanadium(III) and vanadium(V) complexes derived from the tris(2-thiolatoethyl)amine ligand [(NS3)3-] and the bis(2-thiolatoethyl)ether ligand [(OS2)2-] have been synthesized with the aim of investigating the potential of these vanadium sites to bind dinitrogen and activate its reduction. Evidence is presented for the transient existence of {V(NS3)(N2)V(NS3)}, and a series of mononuclear complexes containing hydrazine, hydrazide, imide, ammine, organic cyanide, and isocyanide ligands has been prepared and the chemistry of these complexes investigated. [V(NS3)O] (1) reacts with an excess of N2H4 to give, probably via the intermediates {V(NS3)(NNH2)} (2a) and {V(NS3)(N2)V(NS3)} (3), the VIII adduct [V(NS3)(N2H4)] (4). If 1 is treated with 0.5 mol of N2H4, 0.5 mol of N2 is evolved and green, insoluble [{V(NS3)}n] (5) results. Compound 4 is converted by disproportionation to [V(NS3)(NH3)] (6), but 4 does not act as a catalyst for disproportionation of N2H4 nor does it act as a catalyst for its reduction by Zn/HOC6H3Pri2-2,6. Compound 1 reacts with NR12NR22 (R1 = H or SiMe3; R22 = Me2, MePh, or HPh) to give the hydrazide complexes [V(NS3)(NNR22)] (R22 = Me2, 2b; R22 = MePh, 2c; R22 = HPh, 2d), which are not protonated by anhydrous HBr nor are they reduced by Zn/HOC6H3Pri2-2,6. Compound 2b can also be prepared by reaction of [V(NNMe2)(dipp)3] (dipp = OC6H3Pri2-2,6) with NS3H3. N2H4 is displaced quantitatively from 4 by anions to give the salts [NR34][V(NS3)X] (X = Cl, R3 = Et, 7a; X = Cl, R3 = Ph, 7b; X = Br, R3 = Et, 7c; X = N3, R3 = Bun, 7d; X = N3, R3 = Et, 7e; X = CN, R3 = Et, 7f). Compound 6 loses NH3 thermally to give 5, which can also be prepared from [VCl3(THF)3] and NS3H3/LiBun. Displacement of NH3 from 6 by ligands L gives the adducts [V(NS3)(L)] (L = MeCN, νCN 2264 cm-1, 8a; L = ButNC, νNC 2173 cm-1, 8b; L = C6H11NC, νNC 2173 cm-1, 8c). Reaction of 4 with N3SiMe3 gives [V(NS3)(NSiMe3)] (9), which is converted to [V(NS3)(NH)] (10) by hydrolysis and to [V(NS3)(NCPh3)] (11) by reaction with ClCPh3. Compound 10 is converted into 1 by [NMe4]OH and to [V(NS3)NLi(THF)2] (12) by LiNPri in THF. A further range of imido complexes [V(NS3)(NR4)] (R4 = C6H4Y-4, where Y = H (13a), OMe (13b), Me (13c), Cl (13d), Br (13e), NO2 (13f); R4 = C6H4Y-3, where Y = OMe (13g); Cl (13h); R4 = C6H3Y2-3,4, where Y = Me (13i); Cl (13j); R4 = C6H11(13k)) has been prepared by reaction of 1 with R4NCO. The precursor complex [V(OS2)O(dipp)] (14) [OS22- = O(CH2CH2S)22-] has been prepared from [VO(OPri)3], Hdipp, and OS2H2. It reacts with NH2NMe2 to give [V(OS2)(NNMe2)(dipp)] (15) and with N3SiMe3 to give [V(OS2)(NSiMe3)(dipp)] (16). A second oxide precursor, formulated as [V(OS2)1.5O] (17), has also been obtained, and it reacts with SiMe3NHNMe2 to give [V(OS2)(NNMe2)(OSiMe3)] (18). The X-ray crystal structures of the complexes 2b, 2c, 4, 6, 7a, 8a, 9, 10, 13d, 14, 15, 16, and 18 have been determined, and the 51V NMR and other spectroscopic parameters of the complexes are discussed in terms of electronic effects

    The regulation of interleukin-8 by hypoxia in human macrophages--a potential role in the pathogenesis of the acute respiratory distress syndrome (ARDS).

    Get PDF
    BACKGROUND: The acute respiratory distress syndrome (ARDS) represents a form of severe acute inflammatory lung disease. We have previously demonstrated significantly raised interleukin-8 (IL-8) levels in the lungs of at-risk patients that progress to ARDS, and identified the alveolar macrophage as an important source of this chemokine. We wished to extend this study in a well-defined group of patients with major trauma, and to investigate potential mechanisms for rapid intrapulmonary IL-8 generation. MATERIALS AND METHODS: Patients with major trauma underwent bronchoalveolar lavage (BAL) and IL-8 levels were measured in BAL fluid by ELISA. Human macrophages were derived from peripheral blood monocytes from healthy volunteers. Rabbit alveolar macrophages were obtained from ex-vivo lavage of healthy rabbit lungs. Macrophages were culture under normoxic or hypoxic (PO2 26 mmHg) conditions. IL-8 and other proinflammatory mediator expression was measured by ELISA, northern blotting or multi-probe RNase protection assay. RESULTS: In patients with major trauma, IL-8 levels were significantly higher in patients that progressed to ARDS compared to those that did not (n = 56, P = 0.0001). High IL-8 levels negatively correlated with PaO2/FiO2 (r = -0.56, P < 0.001). In human monocyte derived macrophages hypoxia rapidly upregulated IL-8 protein (within 2 hours) and mRNA expression (within 30 mins). Acute hypoxia also increased rabbit alveolar macrophage IL-8 expression. Hypoxia increased DNA binding activity of AP-1 and C/EBP but not NF-kappaB. Hypoxia induced HIF-1 expression, but cobaltous ions and desferrioxamine did not mimic hypoxic IL-8 induction. Hypoxia downregulated a range of other proinflammatory mediators, including MCP-1 and TNF-alpha. Both the pattern of cytokine expression and transcription factor activation by hypoxia was different to that seen with endotoxin. CONCLUSIONS: Rapidly raised intrapulmonary IL-8 levels are associated with ARDS progression in patients with major trauma. Acute hypoxia, a clinically relevant stimulus, rapidly and selectively upregulates IL-8 in macrophages associated with a novel pattern of transcription factor activation. Acute hypoxia may represent one of potentially several proinflammatory stimuli responsible for rapid intrapulmonary IL-8 generation in patients at-risk of ARDS
    corecore