18 research outputs found

    Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection

    Get PDF
    Background: Risk of severe COVID-19 increases with age, is greater in males, and is associated with lymphopenia, but not with higher burden of SARS-CoV-2. It is unknown whether effects of age and sex on abundance of specific lymphoid subsets explain these correlations. Methods: Multiple regression was used to determine the relationship between abundance of specific blood lymphoid cell types, age, sex, requirement for hospitalization, duration of hospitalization, and elevation of blood markers of systemic inflammation, in adults hospitalized for severe COVID-19 (n=40), treated for COVID-19 as outpatients (n=51), and in uninfected controls (n=86), as well as in children with COVID-19 (n=19), recovering from COVID-19 (n=14), MIS-C (n=11), recovering from MIS-C (n=7), and pediatric controls (n=17). Results: This observational study found that the abundance of innate lymphoid cells (ILCs) decreases more than 7-fold over the human lifespan - T cell subsets decrease less than 2-fold - and is lower in males than in females. After accounting for effects of age and sex, ILCs, but not T cells, were lower in adults hospitalized with COVID-19, independent of lymphopenia. Among SARS-CoV-2-infected adults, the abundance of ILCs, but not of T cells, correlated inversely with odds and duration of hospitalization, and with severity of inflammation. ILCs were also uniquely decreased in pediatric COVID-19 and the numbers of these cells did not recover during follow-up. In contrast, children with MIS-C had depletion of both ILCs and T cells, and both cell types increased during follow-up. In both pediatric COVID-19 and MIS-C, ILC abundance correlated inversely with inflammation. Blood ILC mRNA and phenotype tracked closely with ILCs from lung. Importantly, blood ILCs produced amphiregulin, a protein implicated in disease tolerance and tissue homeostasis. Among controls, the percentage of ILCs that produced amphiregulin was higher in females than in males, and people hospitalized with COVID-19 had a lower percentage of ILCs that produced amphiregulin than did controls. Conclusions: These results suggest that, by promoting disease tolerance, homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infection, and that lower ILC abundance contributes to increased COVID-19 severity with age and in males. Funding: This work was supported in part by the Massachusetts Consortium for Pathogen Readiness and NIH grants R37AI147868, R01AI148784, F30HD100110, 5K08HL143183

    A Cross-Sectional Study of Dietary and Genetic Predictors of Blood Folate Levels in Healthy Young Adults

    Get PDF
    Since 1998, the U.S. has mandated folic acid (FA) fortification of certain grain products to reduce the risk of neural tube defects. Folate intake and red blood cell (RBC) folate concentrations increased substantially post-intervention, although recent studies raise concerns about the level of ongoing benefit. This study investigated blood folate level determinants in healthy young adults, including intake of naturally occurring food folate, synthetic FA, and the interaction of naturally occurring food folate with a common missense variant in the FOLH1 gene thought to affect absorption. Participants (n = 265) completed the Diet History Questionnaire II, RBC folate testing, and were genotyped for the 484T>C FOLH1 variant. Men reported significantly greater intake of all folate sources except for supplemental FA, but RBC folate levels did not significantly differ by sex. Synthetic FA was a stronger predictor of RBC folate than naturally occurring food folate. In the largest racial group, synthetic FA and the interaction of FOLH1 genotype with naturally occurring food folate significantly predicted RBC folate, with the overall model accounting for 13.8% of the variance in RBC folate levels. Blood folate levels rely on a complex interaction of natural and synthetic folate intake as well as FOLH1 genotype

    PAM-flexible genome editing with an engineered chimeric Cas9

    Get PDF
    CRISPR enzymes require a defined protospacer adjacent motif (PAM) flanking a guide RNA-programmed target site, limiting their sequence accessibility for robust genome editing applications. In this study, we recombine the PAM-interacting domain of SpRY, a broad-targeting Cas9 possessing an NRN > NYN (R = A or G, Y = C or T) PAM preference, with the N-terminus of Sc + +, a Cas9 with simultaneously broad, efficient, and accurate NNG editing capabilities, to generate a chimeric enzyme with highly flexible PAM preference: SpRYc. We demonstrate that SpRYc leverages properties of both enzymes to specifically edit diverse PAMs and disease-related loci for potential therapeutic applications. In total, the approaches to generate SpRYc, coupled with its robust flexibility, highlight the power of integrative protein design for Cas9 engineering and motivate downstream editing applications that require precise genomic positioning

    Disease Tolerance, Epigenetic Inheritance, and Surviving Pathogenic Viral Infections

    No full text
    Health is often defined in terms of absence of disease or pathological processes, but this is a definition of exclusion and incomplete. For example, SARS-CoV-2 viral load does not reliably predict disease severity, and so individuals must vary in their ability to control inflammation and maintain normal tissue homeostasis. This host defense strategy is called disease tolerance, and better understanding of disease tolerance mechanisms could change the way that we treat disease and work to maintain health. The first project presented in this dissertation found that after accounting for effects of age and sex, innate lymphoid cells (ILCs), but not T cells, were lower in adults and children sick with COVID-19 or MIS-C, independent of lymphopenia. Furthermore, abundance of ILCs, but not of T cells, correlated inversely with disease severity. These blood ILCs were shown to produce amphiregulin, a protein implicated in disease tolerance and tissue homeostasis, and the percentage of amphiregulin-producing ILCs was lower in males. These results suggest that, by promoting disease tolerance, homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infection, and that lower ILC abundance accounts for increased COVID-19 severity with age and in males. The second project describes a novel mouse model of epigenetic inheritance wherein paternal influenza A virus (IAV) infection results in less severe influenza disease in IAV infected offspring. This offspring phenotype was not attributable to differences in viral load, indicating a possible difference in disease tolerance. Paternal caloric deprivation decreased, and influenza B virus infection increased, offspring influenza disease severity, and in vitro fertilization demonstrated sperm are sufficient to transfer IAV-associated epigenetic inheritance phenotypes. These findings represent a foundation for further work that, by continuing to elucidate the mechanisms of disease tolerance and epigenetic inheritance, could provide novel therapeutic interventions to help promote and maintain health

    Lessons from a local effort to screen for SARS-CoV-2

    Get PDF
    It is breathtaking to consider how the response to pandemic viral pathogens has been transformed over the past century by greater knowledge of fundamental biology and technological innovations including PCR and next-generation sequencing. In striking contrast to the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the pathogen responsible for the 1918 influenza pandemic was not identified until years after the outbreak. The definitive text in 1927 described influenza as “an epidemiologic conception” likely caused by the bacterium Haemophilus influenzae. Six decades later, HIV-1 was discovered within a few years of the first report of AIDS, although it took another decade before HIV-1 RNA detection methods were sensitive enough to correlate viral load during clinical latency with rate of progression to AIDS. Four decades later, the genomic sequence of SARS-CoV-2 was publicly available on the internet within weeks of the unexplained outbreak of fatal pneumonia that is now known as COVID-19. This critical information enabled academic researchers, vaccine manufacturers, diagnostic laboratories, and some governments to spring into action. In the midst of COVID-19 lockdown, despite collapse of reagent supply chains, independent investigators around the world shared expertise and reagents in order to establish desperately needed local screening programs for SARS-CoV-2. A paper by Yang et al. in PNAS describes the analysis of viral load data from one local screening program, the results of which have important implications for efforts to control the spread of SARS-CoV-2 and for understanding the pathogenesis of SARS-CoV-2 infection

    Interleukin-17: Why the Worms Squirm

    No full text
    IL-17 is a cytokine known primarily for its role in inflammation. In a recent issue of Nature, Chen et al. (2017) demonstrate that IL-17 plays a neuromodulatory role in Caenorhabditis elegans by acting directly on neurons to amplify neuronal responses to stimuli and produce changes in animal behavior

    Functional annotation of native enhancers with a Cas9-histone demethylase fusion

    No full text
    Understanding of mammalian enhancers is limited by the lack of a technology to rapidly and thoroughly test the cell type-specific function. Here, we use a nuclease-deficient Cas9 (dCas9)-histone demethylase fusion to functionally characterize previously described and new enhancer elements for their roles in the embryonic stem cell state. Further, we distinguish the mechanism of action of dCas9-LSD1 at enhancers from previous dCas9-effectors

    Innate lymphoid cells and disease tolerance in SARS-CoV-2 infection [preprint]

    Get PDF
    BACKGROUND: Risk of severe coronavirus disease 2019 (COVID-19) increases with age, is greater in males, and is associated with decreased numbers of blood lymphoid cells. Though the reasons for these robust associations are unclear, effects of age and sex on innate and adaptive lymphoid subsets, including on homeostatic innate lymphoid cells (ILCs) implicated in disease tolerance, may underlie the effects of age and sex on COVID-19 morbidity and mortality. METHODS: Flow cytometry was used to quantitate subsets of blood lymphoid cells from people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), comparing those hospitalized with severe COVID-19 (n=40) and those treated as outpatients for less severe disease (n=51). 86 healthy individuals served as controls. The relationship between abundance of specific blood lymphoid cell types, age, sex, hospitalization, duration of hospitalization, and elevation of blood markers for systemic inflammation, was determined using multiple regression. RESULTS: After accounting for effects of age and sex, hospitalization for COVID-19 was associated with 1.78-fold fewer ILCs (95%CI: 2.34–1.36; p = 4.55 x 10−5) and 2.31-fold fewer CD16+ natural killer (NK) cells (95%CI: 3.1–1.71; p = 1.04 x 10−7), when compared to uninfected controls. Among people infected with SARS-CoV-2, the odds ratio for hospitalization, adjusted for age, sex, and duration of symptoms, was 0.413 (95%CI: 0.197–0.724; p = 0.00691) for every 2-fold increase in ILCs. In addition, higher ILC abundance was associated with less time spent in the hospital and lower levels of blood markers associated with COVID-19 severity: each two-fold increase in ILC abundance was associated with a 9.38 day decrease in duration of hospital stay (95% CI: 15.76–3.01; p= 0.0054), and decrease in blood C-reactive protein (CRP) by 46.29 mg/L (95% CI: 71.34–21.24; p = 6.25 x 10−4), erythrocyte sedimentation rate (ESR) by 11.04 mm/h (95% CI: 21.94–0.13; p = 0.047), and the fibrin degradation product D-dimer by 1098.52 ng/mL (95% CI: 1932.84–264.19; p = 0.011). CONCLUSIONS: Both ILCs and NK cells were depleted in the blood of people hospitalized for severe COVID-19, but, among lymphoid cell subsets, only ILC abundance was independently associated with the need for hospitalization, duration of hospital stay, and severity of inflammation. These results indicate that, by promoting disease tolerance, homeostatic ILCs protect against morbidity and mortality in SARS-CoV-2 infection, and suggest that reduction in the number of ILCs with age and in males accounts for the increased risk of severe COVID-19 in these demographic groups

    The piRNA Response to Retroviral Invasion of the Koala Genome

    No full text
    Antisense Piwi-interacting RNAs (piRNAs) guide silencing of established transposons during germline development, and sense piRNAs drive ping-pong amplification of the antisense pool, but how the germline responds to genome invasion is not understood. The KoRV-A gammaretrovirus infects the soma and germline and is sweeping through wild koalas by a combination of horizontal and vertical transfer, allowing direct analysis of retroviral invasion of the germline genome. Gammaretroviruses produce spliced Env mRNAs and unspliced transcripts encoding Gag, Pol, and the viral genome, but KoRV-A piRNAs are almost exclusively derived from unspliced genomic transcripts and are strongly sense-strand biased. Significantly, selective piRNA processing of unspliced proviral transcripts is conserved from insects to placental mammals. We speculate that bypassed splicing generates a conserved molecular pattern that directs proviral genomic transcripts to the piRNA biogenesis machinery and that this innate piRNA response suppresses transposition until antisense piRNAs are produced, establishing sequence-specific adaptive immunity

    Cytotoxic CD4 development requires CD4 effectors to concurrently recognize local antigen and encounter type I IFN-induced IL-15

    No full text
    Summary: Cytotoxic CD4 T cell effectors (ThCTLs) kill virus-infected major histocompatibility complex (MHC) class II+ cells, contributing to viral clearance. We identify key factors by which influenza A virus infection drives non-cytotoxic CD4 effectors to differentiate into lung tissue-resident ThCTL effectors. We find that CD4 effectors must again recognize cognate antigen on antigen-presenting cells (APCs) within the lungs. Both dendritic cells and B cells are sufficient as APCs, but CD28 co-stimulation is not needed. Optimal generation of ThCTLs requires signals induced by the ongoing infection independent of antigen presentation. Infection-elicited type I interferon (IFN) induces interleukin-15 (IL-15), which, in turn, supports CD4 effector differentiation into ThCTLs. We suggest that these multiple spatial, temporal, and cellular requirements prevent excessive lung ThCTL responses when virus is already cleared but ensure their development when infection persists. This supports a model where continuing infection drives the development of multiple, more differentiated subsets of CD4 effectors by distinct pathways
    corecore