31 research outputs found
Auxiliary phosphatases in two-component signal transduction
Signal termination in two-component systems occurs by loss of the phosphoryl group from the response regulator protein. This review explores our current understanding of the structures, catalytic mechanisms and means of regulation of the known families of phosphatases that catalyze response regulator dephosphorylation. The CheZ and CheC/CheX/FliY families, despite different overall structures, employ identical catalytic strategies using an amide side chain to orient a water molecule for in-line attack of the aspartyl phosphate. Spo0E phosphatases contain sequence and structural features that suggest a strategy similar to the chemotaxis phosphatases but the mechanism used by the Rap phosphatases is not yet elucidated. Identification of features shared by phosphatase families may aid in identification of currently unrecognized classes of response regulator phosphatases
A Variable Active Site Residue Influences the Kinetics of Response Regulator Phosphorylation and Dephosphorylation
Two-component regulatory systems, minimally composed of a sensor kinase and a response regulator protein, are common mediators of signal transduction in microorganisms. All response regulators contain a receiver domain with conserved active site residues that catalyze the signal activating and deactivating phosphorylation and dephosphorylation reactions. We explored the impact of variable active site position T+1 (one residue C-terminal to the conserved Thr/Ser) on reaction kinetics and signaling fidelity, using wild type and mutant Escherichia coli CheY, CheB, and NarL to represent the three major sequence classes observed across response regulators: Ala/Gly, Ser/Thr, and Val/Ile/Met, respectively, at T+1. Biochemical and structural data together suggested that different amino acids at T+1 impacted reaction kinetics by altering access to the active site while not perturbing overall protein structure. A given amino acid at position T+1 had similar effects on autodephosphorylation in each protein backgroun..
Phosphoryl Group Flow within the Pseudomonas aeruginosa Pil-Chp Chemosensory System: DIFFERENTIAL FUNCTION OF THE EIGHT PHOSPHOTRANSFERASE AND THREE RECEIVER DOMAINS
Bacterial chemosensory signal transduction systems that regulate motility by type IV pili (T4P) can be markedly more complex than related flagellum-based chemotaxis systems. In T4P-based systems, the CheA kinase often contains numerous potential sites of phosphorylation, but the signaling mechanisms of these systems are unknown. In Pseudomonas aeruginosa, the Pil-Chp system regulates T4P-mediated twitching motility and cAMP levels, both of which play roles in pathogenesis. The Pil-Chp histidine kinase (ChpA) has eight “Xpt” domains; six are canonical histidine-containing phosphotransfer (Hpt) domains and two have a threonine (Tpt) or serine (Spt) in place of the histidine. Additionally, there are two stand-alone receiver domains (PilG and PilH) and a ChpA C-terminal receiver domain (ChpArec). Here, we demonstrate that the ChpA Xpts are functionally divided into three categories as follows: (i) those phosphorylated with ATP (Hpt4–6); (ii) those reversibly phosphorylated by ChpArec (Hpt2–6), and (iii) those with no detectable phosphorylation (Hpt1, Spt, and Tpt). There was rapid phosphotransfer from Hpt2–6 to ChpArec and from Hpt3 to PilH, whereas transfer to PilG was slower. ChpArec also had a rapid rate of autodephosphorylation. The biochemical results together with in vivo cAMP and twitching phenotypes of key ChpA phosphorylation site point mutants supported a scheme whereby ChpArec functions both as a phosphate sink and a phosphotransfer element linking Hpt4–6 to Hpt2–3. Hpt2 and Hpt3 are likely the dominant sources of phosphoryl groups for PilG and PilH, respectively. The data are synthesized in a signaling circuit that contains fundamental features of two-component phosphorelays
A Link between Dimerization and Autophosphorylation of the Response Regulator PhoB
Response regulator proteins within two-component signal transduction systems are activated by phosphorylation and can catalyze their own covalent phosphorylation using small molecule phosphodonors. To date, comprehensive kinetic characterization of response regulator autophosphorylation is limited to CheY, which follows a simple model of phosphodonor binding followed by phosphorylation. We characterized autophosphorylation of the response regulator PhoB, known to dimerize upon phosphorylation. In contrast to CheY, PhoB time traces exhibited an initial lag phase and gave apparent pseudo-first order rate constants that increased with protein concentration. Furthermore, plots of the apparent autophosphorylation rate constant versus phosphodonor concentration were sigmoidal, as were PhoB binding isotherms for the phosphoryl group analog BeF3−. Successful mathematical modeling of the kinetic data necessitated inclusion of the formation of a PhoB heterodimer (one phosphorylated and one unphosphorylated monomer) with an enhanced rate of phosphorylation. Specifically, dimerization constants for the PhoB heterodimer and homodimer (two phosphorylated monomers) were similar, but the rate constant for heterodimer phosphorylation was ∼10-fold higher than for the monomer. In a test of the model, disruption of the known PhoBN dimerization interface by mutation led to markedly slower and noncooperative autophosphorylation kinetics. Furthermore, phosphotransfer from the sensor kinase PhoR was enhanced by dimer formation. Phosphorylation-mediated dimerization allows many response regulators to bind to tandem DNA-binding sites and regulate transcription. Our data challenge the notion that response regulator dimers primarily form between two phosphorylated monomers and raise the possibility that response regulator heterodimers containing one phosphoryl group may participate in gene regulation
Kinetic Characterization of Catalysis by the Chemotaxis Phosphatase CheZ: MODULATION OF ACTIVITY BY THE PHOSPHORYLATED CheY SUBSTRATE
CheZ catalyzes the dephosphorylation of the response regulator CheY in the two-component regulatory system that mediates chemotaxis in Escherichia coli. CheZ is a homodimer with two active sites for dephosphorylation. To gain insight into cellular mechanisms for the precise regulation of intracellular phosphorylated CheY (CheYp) levels, we evaluated the kinetic properties of CheZ. The steady state rate of CheZ-mediated dephosphorylation of CheYp displayed marked sigmoidicity with respect to CheYp concentration and a k(cat) of 4.9 s(-1). In contrast, the gain of function mutant CheZ-I21T with an amino acid substitution far from the active site gave hyperbolic kinetics and required far lower CheYp for half-saturation but had a similar k(cat) value as the wild type enzyme. Stopped flow fluorescence measurements demonstrated a 6-fold faster CheZ/CheYp association rate for CheZ-I21T (k(assoc) = 3.4 x 10(7) M (-1) s(-1)) relative to wild type CheZ (k(assoc) = 5.6 x 10(6) M(-1) s(-1)). Dissociation of the CheZ.CheYBeF(3) complex was slow for both wild type CheZ (k(dissoc) = 0.040 s(-1)) and CheZ-I21T (k(dissoc) = 0.023 s(-1)) and, when taken with the k(assoc) values, implied K(d) values of 7.1 and 0.68 nm, respectively. However, comparison of the k(dissoc) and k(cat) values implied that CheZ and CheYp are not at binding equilibrium during catalysis and that once CheYp binds, it is almost always dephosphorylated. The rate constants were collated to formulate a kinetic model for CheZ-mediated dephosphorylation that includes autoregulation by CheYp and allowed prediction of CheZ activities at CheZ and CheYp concentrations likely to be present in cells
Nonconserved Active Site Residues Modulate CheY Autophosphorylation Kinetics and Phosphodonor Preference
In two-component signal transduction, response regulator proteins contain the catalytic machinery for their own covalent phosphorylation and can catalyze phosphotransfer from a partner sensor kinase or autophosphorylate using various small molecule phosphodonors. Although response regulator autophosphorylation is physiologically relevant and a powerful experimental tool, the kinetic determinants of the autophosphorylation reaction and how those determinants might vary for different response regulators and phosphodonors are largely unknown. We characterized the autophosphorylation kinetics of 21 variants of the model response regulator Escherichia coli CheY that contained substitutions primarily at nonconserved active site positions D+2 (CheY residue 59) and T+2 (CheY residue 89), two residues C-terminal to conserved D57 and T87, respectively. Overall, the CheY variants exhibited a >105-fold range of rate constants (kphos/KS) for reaction with phosphoramidate, acetyl phosphate, or monophosphoimidazole, with the great majority of rates enhanced over wild type CheY. Although phosphodonor preference varied substantially, nearly all the CheY variants reacted faster with phosphoramidate than acetyl phosphate. Correlation between increased positive charge of the D+2/T+2 side chains and faster rates indicated electrostatic interactions are a kinetic determinant. Moreover, sensitivities of rate constants to ionic strength indicated that both long-range and localized electrostatic interactions influence autophosphorylation kinetics. Increased nonpolar surface area of the D+2/T+2 side chains also correlated with enhanced autophosphorylation rate, especially for reaction with phosphoramidate and monophosphoimidazole. Computer docking suggested that highly accelerated monophosphoimidazole autophosphorylation rates for CheY variants with a tyrosine at position T+2 likely reflect structural mimicry of phosphotransfer from the sensor kinase histidyl phosphate
Imidazole as a Small Molecule Analogue in Two-Component Signal Transduction
In two-component signal transduction systems (TCSs), responses to stimuli are mediated through phosphotransfer between protein components. Canonical TCSs use His → Asp phosphotransfer in which phosphoryl groups are transferred from a conserved His on a sensory histidine kinase (HK) to a conserved Asp on a response regulator (RR). RRs contain the catalytic core of His → Asp phosphotransfer, evidenced by the ability of RRs to autophosphorylate with small molecule analogs of phospho-His proteins. Phosphorelays are a more complex variation of TCSs that additionally utilize Asp → His phosphotransfer through the use of an additional component, the histidine-containing phosphotransfer domain (Hpt), which reacts with RRs both as phosphodonors and phosphoacceptors. Here we show that imidazole has features of a rudimentary Hpt. Imidazole acted as a nucleophile and attacked phosphorylated RRs (RR-P) to produce monophosphoimidazole (MPI) and unphosphorylated RR. Phosphotransfer from RR-P to imidazole required the intact RR active site, indicating that the RR provided the core catalytic machinery for Asp → His phosphotransfer. Imidazole functioned in an artificial phosphorelay to transfer phosphoryl groups between unrelated RRs. The X-ray crystal structure of an activated RR•imidazole complex showed imidazole oriented in the RR active site similarly to the His of an Hpt. Imidazole interacted with RR non-conserved active site residues, which influenced the relative reactivity of RR-P with imidazole versus water. Rate constants for reaction of imidazole or MPI with chimeric RRs suggested that the RR active site contributes to the kinetic preferences exhibited by the YPD1 Hpt
Alteration of a Nonconserved Active Site Residue in the Chemotaxis Response Regulator CheY Affects Phosphorylation and Interaction with CheZ
CheY is a response regulator in the well studied two-component system that mediates bacterial chemotaxis. Phosphorylation of CheY at Asp(57) enhances its interaction with the flagellar motor. Asn(59) is located near the phosphorylation site, and possible roles this residue may play in CheY function were explored by mutagenesis. Cells containing CheY59NR or CheY59NH exhibited hyperactive phenotypes (clockwise flagellar rotation), and CheY59NR was characterized biochemically. A continuous enzyme-linked spectroscopic assay that monitors P(i) concentration was the primary method for kinetic analysis of phosphorylation and dephosphorylation. CheY59NR autodephosphorylated at the same rate as wild-type CheY and phosphorylated similarly to wild type with acetyl phosphate and faster (4-14x) with phosphoramidate and monophosphoimidazole. CheY59NR was extremely resistant to CheZ, requiring at least 250 times more CheZ than wild-type CheY to achieve the same dephosphorylation rate enhancement, whereas CheY59NA was CheZ-sensitive. However, several independent approaches demonstrated that CheY59NR bound tightly to CheZ. A submicromolar K(d) for CheZ binding to CheY59NR-P or CheY.BeF(3)(-) was inferred from fluorescence anisotropy measurements of fluoresceinated-CheZ. A complex between CheY59NR-P and CheZ was isolated by analytical gel filtration, and the elution position from the column was indistinguishable from that of the CheZ dimer. Therefore, we were not able to detect large CheY-P.CheZ complexes that have been inferred using other methods. Possible structural explanations for the specific inhibition of CheZ activity as a result of the arginyl substitution at CheY position 59 are discussed
Matching Biochemical Reaction Kinetics to the Timescales of Life: Structural Determinants That Influence the Autodephosphorylation Rate of Response Regulator Proteins
In two-component regulatory systems, covalent phosphorylation typically activates the response regulator signaling protein and hydrolysis of the phosphoryl group reestablishes the inactive state. Despite highly conserved three-dimensional structures and active site features, the rates of catalytic autodephosphorylation for different response regulators vary by a factor of almost 106. Previous studies identified two variable active site residues, corresponding to Escherichia coli CheY residues 59 and 89, that modulate response regulator autodephosphorylation rates about 100-fold. Here, a set of five CheY mutants, which match other “model” response regulators (ArcA, CusR, DctD, FixJ, PhoB, or Spo0F) at variable active site positions corresponding to CheY residues 14, 59 and 89, were characterized functionally and structurally in an attempt to identify mechanisms that modulate autodephosphorylation rate. As expected, the autodephosphorylation rates of the CheY mutants were reduced six- to 40-fold relative to wild type CheY, but all still autodephosphorylated 12- to 80-fold faster than their respective model response regulators. Comparison of X-ray crystal structures of the five CheY mutants (complexed with the phosphoryl group analogue BeF3−) to wild type CheY or corresponding model response regulator structures gave strong evidence for steric obstruction of the phosphoryl group from the attacking water molecule as one mechanism to enhance phosphoryl group stability. Structural data also suggested that impeding the change of a response regulator from the active to inactive conformation might retard the autodephosphorylation reaction if the two processes are coupled, and that the residue at position '58' may contribute to rate modulation. A given combination of amino acids at positions '14', '59', and '89' adopted similar conformations regardless of protein context (CheY or model response regulator), suggesting that knowledge of residue identity may be sufficient to predict autodephosphorylation rate, and hence, the kinetics of the signaling response, in the response regulator family of proteins