8,494 research outputs found

    A Monte Carlo Method for Fermion Systems Coupled with Classical Degrees of Freedom

    Full text link
    A new Monte Carlo method is proposed for fermion systems interacting with classical degrees of freedom. To obtain a weight for each Monte Carlo sample with a fixed configuration of classical variables, the moment expansion of the density of states by Chebyshev polynomials is applied instead of the direct diagonalization of the fermion Hamiltonian. This reduces a cpu time to scale as O(Ndim2logNdim)O(N_{\rm dim}^{2} \log N_{\rm dim}) compared to O(Ndim3)O(N_{\rm dim}^{3}) for the diagonalization in the conventional technique; NdimN_{\rm dim} is the dimension of the Hamiltonian. Another advantage of this method is that parallel computation with high efficiency is possible. These significantly save total cpu times of Monte Carlo calculations because the calculation of a Monte Carlo weight is the bottleneck part. The method is applied to the double-exchange model as an example. The benchmark results show that it is possible to make a systematic investigation using a system-size scaling even in three dimensions within a realistic cpu timescale.Comment: 6 pages including 4 figure

    Order N Monte Carlo Algorithm for Fermion Systems Coupled with Fluctuating Adiabatical Fields

    Full text link
    An improved algorithm is proposed for Monte Carlo methods to study fermion systems interacting with adiabatical fields. To obtain a weight for each Monte Carlo sample with a fixed configuration of adiabatical fields, a series expansion using Chebyshev polynomials is applied. By introducing truncations of matrix operations in a systematic and controlled way, it is shown that the cpu time is reduced from O(N^3) to O(N) where N is the system size. Benchmark results show that the implementation of the algorithm makes it possible to perform systematic investigations of critical phenomena using system-size scalings even for an electronic model in three dimensions, within a realistic cpu timescale.Comment: 9 pages with 4 fig

    Calculation of Densities of States and Spectral Functions by Chebyshev Recursion and Maximum Entropy

    Full text link
    We present an efficient algorithm for calculating spectral properties of large sparse Hamiltonian matrices such as densities of states and spectral functions. The combination of Chebyshev recursion and maximum entropy achieves high energy resolution without significant roundoff error, machine precision or numerical instability limitations. If controlled statistical or systematic errors are acceptable, cpu and memory requirements scale linearly in the number of states. The inference of spectral properties from moments is much better conditioned for Chebyshev moments than for power moments. We adapt concepts from the kernel polynomial approximation, a linear Chebyshev approximation with optimized Gibbs damping, to control the accuracy of Fourier integrals of positive non-analytic functions. We compare the performance of kernel polynomial and maximum entropy algorithms for an electronic structure example.Comment: 8 pages RevTex, 3 postscript figure

    Magnetic Properties of the Second Mott Lobe in Pairing Hamiltonians

    Full text link
    We explore the Mott insulating state of single-band bosonic pairing Hamiltonians using analytical approaches and large scale density matrix renormalization group calculations. We focus on the second Mott lobe which exhibits a magnetic quantum phase transition in the Ising universality class. We use this feature to discuss the behavior of a range of physical observables within the framework of the 1D quantum Ising model and the strongly anisotropic Heisenberg model. This includes the properties of local expectation values and correlation functions both at and away from criticality. Depending on the microscopic interactions it is possible to achieve either antiferromagnetic or ferromagnetic exchange interactions and we highlight the possibility of observing the E8 mass spectrum for the critical Ising model in a longitudinal magnetic field.Comment: 14 pages, 15 figure

    Self-Modification of Policy and Utility Function in Rational Agents

    Full text link
    Any agent that is part of the environment it interacts with and has versatile actuators (such as arms and fingers), will in principle have the ability to self-modify -- for example by changing its own source code. As we continue to create more and more intelligent agents, chances increase that they will learn about this ability. The question is: will they want to use it? For example, highly intelligent systems may find ways to change their goals to something more easily achievable, thereby `escaping' the control of their designers. In an important paper, Omohundro (2008) argued that goal preservation is a fundamental drive of any intelligent system, since a goal is more likely to be achieved if future versions of the agent strive towards the same goal. In this paper, we formalise this argument in general reinforcement learning, and explore situations where it fails. Our conclusion is that the self-modification possibility is harmless if and only if the value function of the agent anticipates the consequences of self-modifications and use the current utility function when evaluating the future.Comment: Artificial General Intelligence (AGI) 201

    Bose--Hubbard Models Coupled to Cavity Light Fields

    Full text link
    Recent experiments on strongly coupled cavity quantum electrodynamics present new directions in "matter-light" systems. Following on from our previous work [Phys. Rev. Lett. 102, 135301 (2009)] we investigate Bose-Hubbard models coupled to a cavity light field. We discuss the emergence of photoexcitations or "polaritons" within the Mott phase, and obtain the complete variational phase diagram. Exploiting connections to the super-radiance transition in the Dicke model we discuss the nature of polariton condensation within this novel state. Incorporating the effects of carrier superfluidity, we identify a first-order transition between the superradiant Mott phase and the single component atomic superfluid. The overall predictions of mean field theory are in excellent agreement with exact diagonalization and we provide details of superfluid fractions, density fluctuations, and finite size effects. We highlight connections to recent work on coupled cavity arrays.Comment: 16 pages, 17 figure
    corecore