673 research outputs found
SPH Simulations of Direct Impact Accretion in the Ultracompact AM CVn Binaries
The ultracompact binary systems V407 Vul (RX J1914.4+2456) and HM Cnc (RX
J0806.3+1527) - a two-member subclass of the AM CVn stars - continue to pique
interest because they defy unambiguous classification. Three proposed models
remain viable at this time, but none of the three is significantly more
compelling than the remaining two, and all three can satisfy the observational
constraints if parameters in the models are tuned. One of the three proposed
models is the direct impact model of Marsh & Steeghs (2002), in which the
accretion stream impacts the surface of a rapidly-rotating primary white dwarf
directly but at a near-glancing angle. One requirement of this model is that
the accretion stream have a high enough density to advect its specific kinetic
energy below the photosphere for progressively more-thermalized emission
downstream, a constraint that requires an accretion spot size of roughly
1.2x10^5 km^2 or smaller. Having at hand a smoothed particle hydrodynamics code
optimized for cataclysmic variable accretion disk simulations, it was
relatively straightforward for us to adapt it to calculate the footprint of the
accretion stream at the nominal radius of the primary white dwarf, and thus to
test this constraint of the direct impact model. We find that the mass flux at
the impact spot can be approximated by a bivariate Gaussian with standard
deviation \sigma_{\phi} = 164 km in the orbital plane and \sigma_{\theta} = 23
km in the perpendicular direction. The area of the the 2\sigma ellipse into
which 86% of the mass flux occurs is roughly 47,400 km^2, or roughly half the
size estimated by Marsh & Steeghs (2002). We discuss the necessary parameters
of a simple model of the luminosity distribution in the post-impact emission
region.Comment: 24 pages, 5 figures, Accepted for publication in Ap
Family medicine graduates' perceptions of intimidation, harassment, and discrimination during residency training
<p>Abstract</p> <p>Background</p> <p>Despite there being considerable literature documenting learner distress and perceptions of mistreatment in medical education settings, these concerns have not been explored in-depth in Canadian family medicine residency programs. The purpose of the study was to examine intimidation, harassment and/or discrimination (IHD) as reported by Alberta family medicine graduates during their two-year residency program.</p> <p>Methods</p> <p>A retrospective questionnaire survey was conducted of all (n = 377) family medicine graduates from the University of Alberta and University of Calgary who completed residency training during 2001-2005. The frequency, type, source, and perceived basis of IHD were examined by gender, age, and Canadian vs international medical graduate. Descriptive data analysis (frequency, crosstabs), Chi-square, Fisher's Exact test, analysis of variance, and logistic regression were used as appropriate.</p> <p>Results</p> <p>Of 377 graduates, 242 (64.2%) responded to the survey, with 44.7% reporting they had experienced IHD while a resident. The most frequent type of IHD experienced was in the form of inappropriate verbal comments (94.3%), followed by work as punishment (27.6%). The main sources of IHD were specialist physicians (77.1%), hospital nurses (54.3%), specialty residents (45.7%), and patients (35.2%). The primary basis for IHD was perceived to be gender (26.7%), followed by ethnicity (16.2%), and culture (9.5%). A significantly greater proportion of males (38.6%) than females (20.0%) experienced IHD in the form of work as punishment. While a similar proportion of Canadian (46.1%) and international medical graduates (IMGs) (41.0%) experienced IHD, a significantly greater proportion of IMGs perceived ethnicity, culture, or language to be the basis of IHD.</p> <p>Conclusions</p> <p>Perceptions of IHD are prevalent among family medicine graduates. Residency programs should explicitly recognize and robustly address all IHD concerns.</p
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
One-Year Analysis of the Prospective Multicenter SENTRY Clinical Trial: Safety and Effectiveness of the Novate Sentry Bioconvertible Inferior Vena Cava Filter
Purpose
To prospectively assess the Sentry bioconvertible inferior vena cava (IVC) filter in patients requiring temporary protection against pulmonary embolism (PE).
Materials and Methods
At 23 sites, 129 patients with documented deep vein thrombosis (DVT) or PE, or at temporary risk of developing DVT or PE, unable to use anticoagulation were enrolled. The primary end point was clinical success, including successful filter deployment, freedom from new symptomatic PE through 60 days before filter bioconversion, and 6-month freedom from filter-related complications. Patients were monitored by means of radiography, computerized tomography (CT), and CT venography to assess filtering configuration through 60 days, filter bioconversion, and incidence of PE and filter-related complications through 12 months.
Results
Clinical success was achieved in 111 of 114 evaluable patients (97.4%, 95% confidence interval [CI] 92.5%–99.1%). The rate of freedom from new symptomatic PE through 60 days was 100% (n = 129, 95% CI 97.1%–100.0%), and there were no cases of PE through 12 months for either therapeutic or prophylactic indications. Two patients (1.6%) developed symptomatic caval thrombosis during the first month; neither experienced recurrence after successful interventions. There was no filter tilting, migration, embolization, fracture, or caval perforation by the filter, and no filter-related death through 12 months. Filter bioconversion was successful for 95.7% (110/115) at 6 months and for 96.4% (106/110) at 12 months.
Conclusions
The Sentry IVC filter provided safe and effective protection against PE, with a high rate of intended bioconversion and a low rate of device-related complications, through 12 months of imaging-intense follow-up
Amicus Brief, Lebron v. Gottlieb Memorial Hospital
Illinois Public Act 82-280, § 2-1706.5, as amended by P.A. 94-677, § 330 (eff. Aug. 25, 2005), and as codified as 735 ILCS 5/2-1706.5(a), imposes a 1 million “cap” on the noneconomic damages that may be awarded against a hospital, its affiliates, or their employees.
This brief will address two of the questions presented for review by the parties:
1. Does the cap violate the Illinois Constitution’s prohibition on “special legislation,” Art. IV, § 3, because it unnecessarily, arbitrarily, and irrationally grants exceptional benefits and privileges exclusively to certain classes of tort defendants.
2. Does the cap violate the Illinois Constitution’s guarantee of “equal protection,” Art. I, § 2, because it unnecessarily, arbitrarily, and irrationally imposes extraordinary burdens uniquely upon certain classes and sub-classes of tort plaintiffs
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
CYLD Enhances Severe Listeriosis by Impairing IL-6/STAT3-Dependent Fibrin Production
The facultative intracellular bacterium Listeria monocytogenes (Lm) may cause severe infection in humans and livestock. Control of acute listeriosis is primarily dependent on innate immune responses, which are strongly regulated by NF-kappa B, and tissue protective factors including fibrin. However, molecular pathways connecting NF-kappa B and fibrin production are poorly described. Here, we investigated whether the deubiquitinating enzyme CYLD, which is an inhibitor of NF-kappa B-dependent immune responses, regulated these protective host responses in murine listeriosis. Upon high dose systemic infection, all C57BL/6 Cyld(-/-) mice survived, whereas 100% of wildtype mice succumbed due to severe liver pathology with impaired pathogen control and hemorrhage within 6 days. Upon in vitro infection with Lm, CYLD reduced NF-kappa B-dependent production of reactive oxygen species, interleukin (IL)-6 secretion, and control of bacteria in macrophages. Furthermore, Western blot analyses showed that CYLD impaired STAT3-dependent fibrin production in cultivated hepatocytes. Immunoprecipitation experiments revealed that CYLD interacted with STAT3 in the cytoplasm and strongly reduced K63-ubiquitination of STAT3 in IL-6 stimulated hepatocytes. In addition, CYLD diminished IL-6-induced STAT3 activity by reducing nuclear accumulation of phosphorylated STAT3. In vivo, CYLD also reduced hepatic STAT3 K63-ubiquitination and activation, NF-kappa B activation, IL-6 and NOX2 mRNA production as well as fibrin production in murine listeriosis. In vivo neutralization of IL-6 by anti-IL-6 antibody, STAT3 by siRNA, and fibrin by warfarin treatment, respectively, demonstrated that IL-6-induced, STAT3-mediated fibrin production significantly contributed to protection in Cyld(-/-) mice. In addition, in vivo Cyld siRNA treatment increased STAT3 phosphorylation, fibrin production, pathogen control and survival of Lm-infected WT mice illustrating that therapeutic inhibition of CYLD augments the protective NF-kappa B/IL-6/STAT3 pathway and fibrin production
Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector
This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at √s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb−1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y|<2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions
Measurement of the production cross section for W-bosons in association with jets in pp collisions at s=7 TeV with the ATLAS detector
This Letter reports on a first measurement of the inclusive W + jets cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes of the W-boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections sigma (W + >= n)/sigma(W + >= n - 1) for inclusive jet multiplicities n = 1-4. The results, based on an integrated luminosity of 1.3 pb(-1), have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order calculations, studied here for n <= 2, are found in good agreement with the data. Leading-order multiparton event generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicitie
- …