3 research outputs found

    Physicochemical and Rheological Changes of Starch in Nixtamalization Processes: Extrusion as an Alternative to Produce Corn Flour

    Get PDF
    Corn tortilla is a food consumed mainly in MĂ©xico and Central America. It provides 50% of total calories ingestion and is a good source of fiber. Tortilla is produced by the nixtamalization process using corn, water and lime. It has been produced by alternative processes as extrusion, reducing cooking liquor, and increasing dietary fiber. The aim of this book chapter is to describe the changes in corn starch by different nixtamalization processes, also are presented the advantages and disadvantages of both processes, encouraging some aspects of producing corn flour by extrusion. The extrusion is a technology that is dependent of process variables and is reflected on quality of end product. Several factors are involved, as feed moisture and temperature, and they have a direct impact on corn starch physicochemical, textural, and rheological properties

    Antioxidant Effect of Nanoparticles Composed of Zein and Orange (<i>Citrus sinensis</i>) Extract Obtained by Ultrasound-Assisted Extraction

    No full text
    In the present research, an orange extract (OE) was obtained and encapsulated in a zein matrix for its subsequent physicochemical characterization and evaluation of its antioxidant capacity. The OE consists of phenolic compounds and flavonoids extracted from orange peel (Citrus sinensis) by ultrasound-assisted extraction (UAE). The results obtained by dynamic light scattering (DLS) and scanning electron microscopy (SEM) indicated that zein nanoparticles with orange extract (NpZOE) presented a nanometric size and spherical shape, presenting a hydrodynamic diameter of 159.26 ± 5.96 nm. Furthermore, ζ-potential evolution and Fourier transform infrared spectroscopy (FTIR) techniques were used to evaluate the interaction between zein and OE. Regarding antioxidant activity, ABTS and DPPH assays indicated no significant differences at high concentrations of orange peel extract and NpZOE; however, NpZOE was more effective at low concentrations. Although this indicates that ultrasonication as an extraction method effectively obtains the phenolic compounds present in orange peels, the nanoprecipitation method under the conditions used allowed us to obtain particles in the nanometric range with positive ζ-potential. On the other hand, the antioxidant capacity analysis indicated a high antioxidant capacity of both OE and the NpZOE. This study presents the possibility of obtaining orange extracts by ultrasound and coupling them to zein-based nanoparticulate systems to be applied as biomedical materials functionalized with antioxidant substances of pharmaceutical utility
    corecore