2 research outputs found

    Cell-cycle exit and stem cell differentiation are coupled through regulation of mitochondrial activity in the Drosophila testis

    Get PDF
    Summary Whereas stem and progenitor cells proliferate to maintain tissue homeostasis, fully differentiated cells exit the cell cycle. How cell identity and cell-cycle state are coordinated during differentiation is still poorly understood. The Drosophila testis niche supports germline stem cells and somatic cyst stem cells (CySCs). CySCs give rise to post-mitotic cyst cells, providing a tractable model to study the links between stem cell identity and proliferation. We show that, while cell-cycle progression is required for CySC self-renewal, the E2f1/Dp transcription factor is dispensable for self-renewal but instead must be silenced by the Drosophila retinoblastoma homolog, Rbf, to permit differentiation. Continued E2f1/Dp activity inhibits the expression of genes important for mitochondrial activity. Furthermore, promoting mitochondrial biogenesis rescues the differentiation of CySCs with ectopic E2f1/Dp activity but not their cell-cycle exit. In sum, E2f1/Dp coordinates cell-cycle progression with stem cell identity by regulating the metabolic state of CySCs

    Rel governs loser elimination during stem cell competition in the Drosophila testis

    No full text
    In the Drosophila testis, a group of stromal cells termed hub provides multiple niche signals for the surrounding germline and somatic stem cells. Stem cells of both populations compete for physical retention in the niche, and clones unable to transduce any one niche signal are rapidly eliminated from the stem cell pool by differentiation. We have mapped the transcriptomes of isolated somatic cyst stem cells and differentiated cyst cells, and found that the stem cells but not their differentiated progeny exhibit the signature of an innate immune response including the NF-κB transcription factor Relish (Rel). Related signalling pathways had previously implicated in cell competition in larval epithelia, prompting the question of whether NF-κB signalling was, despite the clear differences between the two competition scenarios, also involved in stem cell competition in the testis. Here we show i) that in the testis Rel is dispensable for stemness, ii) that loss of Rel or the upstream receptor Toll suppresses loser elimination following a variety of different triggers used to induce loser fate, and iii) that clonal Rel activation is sufficient for the displacement of neutral or winner cells from the niche, even if these cells otherwise retain stem cell properties
    corecore