1,956 research outputs found

    Mortalidad por lesiones de tránsito en adultos mayores en la República de Ecuador entre los años 1990 y 2018: estudio descriptivo

    Get PDF
    The present study aimed to estimate the trend in road traffic injury mortality in older adults (60 years of age or older) and comparison with those <60 years of age in Ecuador (1990-2018). Official death records and population projections were used to calculate mortality rates per 100,000 population, rate ratios, years of potential life lost (YPLL), and trends. Those under 60 years of age had mortality rates of 16.7 (per 100,000) compared to 36.2 (per 100,000) for older adults, with an increasing trend in YPLL. Older adults recorded fewer deaths than the younger population. However, it is necessary to develop road safety strategies oriented to the progressive aging of the Ecuadorian population. Keywords: older adults, traffic accidents, mortality, trends, Ecuador. References [1]World Health Organization (2018, May 17). Global Status Report on Road Safety 2018 [Online]. Available: https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/ [2]A. F. Algora-Buenafé, M. Russo-Puga, P. R. Suasnavas-Bermúdez, P. Merino-Salazar and A. R. Gómez-García,"Tendencias de los accidentes de tránsito en Ecuador: 2000-2015", Gerencia y Políticas de Salud, vol. 16, n.º 33, pp. 52–58, noviembre de 2017. [Online]. Available: https://doi.org/10.11144/javeriana.rgps16-33.tate. [Last Access: September 2nd, 2021 ]. [3]Pan American Health Organization (2019, June 22). Status of Road Safety in the Region of the Americas [Online]. Available: http://iris.paho.org/xmlui/handle/123456789/51088. [4]S. J. Eun, "Trends in mortality from road traffic injuries in South Korea, 1983–2017: Joinpoint regression and age-period-cohort analyses", Accident Analysis &Prevention, vol. 134, p. 105325, January 2020. [Online]. Available: https://doi.org/10.1016/j.aap.2019.105325. [Last Access: September 2nd, 2021 ]. [5]S. Azami-Aghdash, M. H. Aghaei, and H. Sadeghi-Bazarghani, "Epidemiology of Road Traffic Injuries among Elderly People; A Systematic Review and Meta-Analysis", Bulletin of Emergency and Trauma, vol. 6, n.º 4, pp. 279–291, October 2018. [Online]. Available: https://doi.org/10.29252/beat-060403. [Last Access: September 7th, 2021 ]. [6]Y. Abolfathi Momtaz, R. Kargar, R. Hosseiny, and R. Sahaf, "Rate and pattern of road traffic accidents among older and younger drivers", Healthy Aging Research, vol. 7, n.º 2, June 2018, art. n.º e18. [Online]. Available: https://doi.org/10.1097/hxr.0000000000000018. [Last Access: October 13th, 2021 ]. [7]P. Martínez, D. Contreras and M. Moreno, "Safe mobility, socioeconomic inequalities, and aging: A 12-year multilevel interrupted time-series analysis of road traffic death rates in a Latin American country", PLOS ONE, vol. 15, n.º 1, enero de 2020, art. n.º e0224545. [Online]. Available: https://doi.org/10.1371/journal.pone.0224545. [Last Access: October 10th, 2021 ]. [8]G. Bergen et al., "How do older adult drivers self-regulate? Characteristics of self-regulation classes defined by latent class analysis", Journal of Safety Research, vol. 61, pp. 205–210, June 2017. [Online]. Available: https://doi.org/10.1016/j.jsr.2017.01.002. [Last Access: October 9th, 2021 ] [9]Instituto Nacional de Estadística y Censos (2018, February 2). Registros Estadísticos de Nacidos Vivos, Defunciones Fetales y Defunciones Generales [Online]. Available: https://www.ecuadorencifras.gob.ec/nacimientos_y_defunciones. [10]Instituto Nacional de Estadística y Censos (2017, August 2). Proyecciones Demográficas, 2010 – 2020. [Online]. Available: https://sni.gob.ec/proyecciones-y-estudios-demograficos. [11]W. Y. Yee, "Road traffic injuries in the elderly", Emergency Medicine Journal, vol. 23, n.º 1, pp. 42–46, January 2006. [Online]. Available: https://doi.org/10.1136/emj.2005.023754. [Last Access: October 21st, 2021] [12]L. McElroy, J. Juern, A. Bertleson, Q. Xiang, A. Szabo and J. Weigelt, "A single urban center experience with adult pedestrians struck by motor vehicles", WMJ:official publication of the State Medical Society of Wisconsin, vol. 112(3), pp. 117-122, 2013. [13]K. Bhalla, M. Naghavi, S. Shahraz, D. Bartels and C. J. L. Murray, "Building national estimates of the burden of road traffic injuries in developing countries from all available data sources: Iran", Injury Prevention, vol. 15, n.º 3, pp. 150–156, June 2009. [Online]. Available: https://doi.org/10.1136/ip.2008.020826. [Last Access: October 1st, 2021]. [14]D. Bartels, K. Bhalla, S. Shahraz, J. Abraham, R. Lozano and C. J. L. Murray, "Incidence of road injuries in Mexico: country report", International Journal of Injury Control and Safety Promotion, vol. 17, n.º 3, pp. 169–176, September 2010. [Online]. Available: https://doi.org/10.1080/17457300903564553. [Last Access: November 16th, 2021]. [15]W. R. Boot, C. Stothart and N. Charness, "Improving the Safety of Aging Road Users: A Mini-Review", Gerontology, vol. 60, n.º 1, pp. 90–96, 2014. [Online]. Available: https://doi.org/10.1159/000354212.  [Last Access: November 6th, 2021] [16]Y. L. Michael, E. P. Whitlock, J. S. Lin, R. Fu, E. A. O'Connor and R. Gold, "Primary Care–Relevant Interventions to Prevent Falling in Older Adults: A Systematic Evidence Review for the U.S. Preventive Services Task Force", Annals of Internal Medicine, vol. 153, n.º 12, p. 815, December 2010. [Online]. Available: https://doi.org/10.7326/0003-4819-153-12-201012210-00008.[Last Access: November 29th, 2021] [17]H. Etehad, S. Yousefzadeh-Chabok, A. Davoudi-Kiakalaye, D. A. Moghadam, H. Hemati and Z. Mohtasham-Amiri, "Impact of road traffic accidents on the elderly", Archives of Gerontology and Geriatrics, vol. 61, n.º 3, pp. 489–493, November de 2015. [Online]. Available: https://doi.org/10.1016/j.archger.2015.08.008. [Last Access: November 3th, 2021]. [18]B. H. Ang, W. S. Chen and S. W. H. Lee, "Global burden of road traffic accidents in older adults: A systematic review and meta-regression analysis", Archives of Gerontology and Geriatrics, vol. 72, pp. 32–38, September 2017. [Online]. Available: https://doi.org/10.1016/j.archger.2017.05.004. [Last Access: December 19th, 2021] [19]J. P. Thompson, M. R. J. Baldock and J. K. Dutschke, "Trends in the crash involvement of older drivers in Australia", Accident Analysis & Prevention, vol. 117, pp. 262–269, August 2018. [Online]. Available: https://doi.org/10.1016/j.aap.2018.04.027. [Last Access: December 16th, 2021].El presente estudio tuvo como objetivo estimar la tendencia de mortalidad por lesiones de tránsito en adultos mayores (igual o mayor a 60 años edad) y la comparación con los menores a 60 años edad en el Ecuador (1990-2018). Se emplearon los registros de defunción y proyecciones demográficas oficiales para el cálculo de tasas de mortalidad por 100 mil habitantes, razón de tasas, años de vida potencialmente perdidos (AVPP) y tendencias. Los menores a 60 años edad registraron tasas de mortalidad de 16,7 (por 100 mil) frente a 36,2 (por 100 mil) en los adultos mayores, con tendencia al aumento en los AVPP. Los adultos mayores registraron menor número de casos de fallecimientos con relación a la población más joven. Sin embargo, es necesario elaborar estrategias en seguridad vial orientadas al progresivo envejecimiento de la población ecuatoriana. Palabras Clave: Anciano, accidentes de tránsito, mortalidad, tendencias, Ecuador. Referencias [1]World Health Organization (2018, May 17). Global Status Report on Road Safety 2018 [Online]. Available: https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/ [2]A. F. Algora-Buenafé, M. Russo-Puga, P. R. Suasnavas-Bermúdez, P. Merino-Salazar y A. R. Gómez-García,"Tendencias de los accidentes de tránsito en Ecuador: 2000-2015", Gerencia y Políticas de Salud, vol. 16, n.º 33, pp. 52–58, noviembre de 2017. Accedido el 2 deseptiembre de 2021. [En línea]. Disponible: https://doi.org/10.11144/javeriana.rgps16-33.tate [3]Pan American Health Organization (2019, June 22). Status of Road Safety in the Region of the Americas [Online]. Available: http://iris.paho.org/xmlui/handle/123456789/51088. [4]S. J. Eun, "Trends in mortality from road traffic injuries in South Korea, 1983–2017: Joinpoint regression and age-period-cohort analyses", Accident Analysis &Prevention, vol. 134, p. 105325, enero de 2020. Accedido el 2 de septiembre de 2021. [En línea]. Disponible: https://doi.org/10.1016/j.aap.2019.105325. [5]S. Azami-Aghdash, M. H. Aghaei y H. Sadeghi-Bazarghani, "Epidemiology of Road Traffic Injuries among Elderly People; A Systematic Review and Meta-Analysis", Bulletin of Emergency and Trauma, vol. 6, n.º 4, pp. 279–291, octubre de 2018. Accedido el 7 deseptiembre de 2021. [En línea]. Disponible: https://doi.org/10.29252/beat-060403 [6]Y. Abolfathi Momtaz, R. Kargar, R. Hosseiny y R. Sahaf, "Rate and pattern of road traffic accidents among older and younger drivers", Healthy Aging Research, vol. 7, n.º 2, junio de 2018, art. n.º e18. Accedido el 13 de octubre de 2021. [En línea]. Disponible: https://doi.org/10.1097/hxr.0000000000000018. [7]P. Martínez, D. Contreras y M. Moreno, "Safe mobility, socioeconomic inequalities, and aging: A 12-year multilevel interrupted time-series analysis of road traffic death rates in a Latin American country", PLOS ONE, vol. 15, n.º 1, enero de 2020, art. n.º e0224545. Accedido el 10 de octubre de 2021. [En línea]. Disponible: https://doi.org/10.1371/journal.pone.0224545 [8]G. Bergen et al., "How do older adult drivers self-regulate? Characteristics of self-regulation classes defined by latent class analysis", Journal of Safety Research, vol. 61, pp. 205–210, junio de 2017. Accedido el 9 de octubre de 2021. [En línea]. Disponible: https://doi.org/10.1016/j.jsr.2017.01.002. [9]Instituto Nacional de Estadística y Censos (2018, February 2). Registros Estadísticos de Nacidos Vivos, Defunciones Fetales y Defunciones Generales [Online].Available: https://www.ecuadorencifras.gob.ec/nacimientos_y_defunciones. [10]Instituto Nacional de Estadística y Censos (2017, August 2). Proyecciones Demográficas, 2010 – 2020. [Online]. Available: https://sni.gob.ec/proyecciones-y-estudios-demograficos. [11]W. Y. Yee, "Road traffic injuries in the elderly", Emergency Medicine Journal, vol. 23, n.º 1, pp. 42–46, enero de 2006. Accedido el 21 de octubre de2021. [En línea]. Disponible: https://doi.org/10.1136/emj.2005.023754. [12]L. McElroy, J. Juern, A. Bertleson, Q. Xiang, A. Szabo and J. Weigelt, "A single urban center experience with adult pedestrians struck by motor vehicles", WMJ:official publication of the State Medical Society of Wisconsin, vol. 112(3), pp. 117-122, 2013. [13]K. Bhalla, M. Naghavi, S. Shahraz, D. Bartels y C. J. L. Murray, "Building national estimates of the burden of road traffic injuries in developing countries from all available data sources: Iran", Injury Prevention, vol. 15, n.º 3, pp. 150–156, junio de 2009. Accedido el 1 de octubre de 2021. [En línea]. Disponible: https://doi.org/10.1136/ip.2008.020826. [14]D. Bartels, K. Bhalla, S. Shahraz, J. Abraham, R. Lozano y C. J. L. Murray, "Incidence of road injuries in Mexico: country report", International Journal of Injury Control and Safety Promotion, vol. 17, n.º 3, pp. 169–176, septiembre de 2010. Accedido el 16 de noviembre de 2021. [En línea]. Disponible: https://doi.org/10.1080/17457300903564553. [15]W. R. Boot, C. Stothart y N. Charness, "Improving the Safety of Aging Road Users: A Mini-Review", Gerontology, vol. 60, n.º 1, pp. 90–96, 2014. Accedido el 6 de noviembre de 2021. [En línea]. Disponible: https://doi.org/10.1159/000354212. [16]Y. L. Michael, E. P. Whitlock, J. S. Lin, R. Fu, E. A. O'Connor y R. Gold, "Primary Care–Relevant Interventions to Prevent Falling in Older Adults: A Systematic Evidence Review for the U.S. Preventive Services Task Force", Annals of Internal Medicine, vol. 153, n.º 12, p. 815, diciembre de 2010. Accedido el 29 de noviembre de 2021. [En línea]. Disponible: https://doi.org/10.7326/0003-4819-153-12-201012210-00008. [17]H. Etehad, S. Yousefzadeh-Chabok, A. Davoudi-Kiakalaye, D. A. Moghadam, H. Hemati y Z. Mohtasham-Amiri, "Impact of road traffic accidents on the elderly", Archives of Gerontology and Geriatrics, vol. 61, n.º 3, pp. 489–493, noviembre de 2015. Accedido el 3 de noviembre de 2021. [En línea]. Disponible: https://doi.org/10.1016/j.archger.2015.08.008. [18]B. H. Ang, W. S. Chen y S. W. H. Lee, "Global burden of road traffic accidents in older adults: A systematic review and meta-regression analysis", Archives of Gerontology and Geriatrics, vol. 72, pp. 32–38, septiembre de 2017. Accedido el 19 de diciembre de 2021. [En línea]. Disponible: https://doi.org/10.1016/j.archger.2017.05.004. [19]J. P. Thompson, M. R. J. Baldock y J. K. Dutschke, "Trends in the crash involvement of older drivers in Australia", Accident Analysis & Prevention, vol. 117, pp. 262–269, agosto de 2018. Accedido el 16 de diciembre de 2021. [En línea]. Disponible: https://doi.org/10.1016/j.aap.2018.04.027

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Search for anomalous couplings in boosted WW/WZ -> l nu q(q)over-bar production in proton-proton collisions at root s=8TeV

    Get PDF
    Peer reviewe
    corecore