62,202 research outputs found
Meson decay in a corrected model
Extensively applied to both light and heavy meson decay and standing as one
of the most successful strong decay models is the model, in which
pair production is the dominant mechanism. The pair production can
be obtained from the non-relativistic limit of a microscopic interaction
Hamiltonian involving Dirac quark fields. The evaluation of the decay amplitude
can be performed by a diagrammatic technique for drawing quark lines. In this
paper we use an alternative approach which consists in a mapping technique, the
Fock-Tani formalism, in order to obtain an effective Hamiltonian starting from
same microscopic interaction. An additional effect is manifest in this
formalism associated to the extended nature of mesons: bound-state corrections.
A corrected is obtained and applied, as an example, to
and decays.Comment: 3 figures. To appear in Physical Review
The lattice gluon propagator in renormalizable gauges
We study the SU(3) gluon propagator in renormalizable gauges
implemented on a symmetric lattice with a total volume of (3.25 fm) for
values of the guage fixing parameter up to . As expected, the
longitudinal gluon dressing function stays constant at its tree-level value
. Similar to the Landau gauge, the transverse gauge gluon
propagator saturates at a non-vanishing value in the deep infrared for all
values of studied. We compare with very recent continuum studies and
perform a simple analysis of the found saturation with a dynamically generated
effective gluon mass.Comment: 6 pages, 4 figure
Topological Approach to Microcanonical Thermodynamics and Phase Transition of Interacting Classical Spins
We propose a topological approach suitable to establish a connection between
thermodynamics and topology in the microcanonical ensemble. Indeed, we report
on results that point to the possibility of describing {\it interacting
classical spin systems} in the thermodynamic limit, including the occurrence of
a phase transition, using topology arguments only. Our approach relies on Morse
theory, through the determination of the critical points of the potential
energy, which is the proper Morse function. Our main finding is to show that,
in the context of the studied classical models, the Euler characteristic
embeds the necessary features for a correct description of several
magnetic thermodynamic quantities of the systems, such as the magnetization,
correlation function, susceptibility, and critical temperature. Despite the
classical nature of the studied models, such quantities are those that do not
violate the laws of thermodynamics [with the proviso that Van der Waals loop
states are mean field (MF) artifacts]. We also discuss the subtle connection
between our approach using the Euler entropy, defined by the logarithm of the
modulus of per site, and that using the {\it Boltzmann}
microcanonical entropy. Moreover, the results suggest that the loss of
regularity in the Morse function is associated with the occurrence of unstable
and metastable thermodynamic solutions in the MF case. The reliability of our
approach is tested in two exactly soluble systems: the infinite-range and the
short-range models in the presence of a magnetic field. In particular, we
confirm that the topological hypothesis holds for both the infinite-range () and the short-range () models. Further studies are very
desirable in order to clarify the extension of the validity of our proposal
Anisotropic renormalized fluctuations in the microwave resistivity in YBCO
We discuss the excess conductivity above Tc due to renormalized
order-parameter fluctuations in YBCO at microwave frequencies. We calculate the
effects of the uniaxial anisotropy on the renormalized fluctuations in the
Hartree approximation, extending the isotropic theory developed by Dorsey
[Phys. Rev. B 43, 7575 (1991)]. Measurements of the real part of the microwave
resistivity at 24 and 48 GHz and of the dc resistivity are performed on
different YBCO films. The onset of the superconducting transition and the
deviation from the linear temperature behavior above Tc can be fully accounted
for by the extended theory. According to the theoretical calculation here
presented, a departure from gaussian toward renormalized fluctuations is
observed. Very consistent values of the fundamental parameters (critical
temperature, coherence lenghts, penetration depth) of the superconducting state
are obtained.Comment: RevTex, 8 pages with 5 figures included, to be published in Physical
Review
Nonlinear c-axis transport in Bi_2Sr_2CaCu_2O_(8+d) from two-barrier tunneling
Motivated by the peculiar features observed through intrinsic tunneling
spectroscopy of BiSrCaCuO mesas in the normal state,
we have extended the normal state two-barrier model for the c-axis transport
[M. Giura et al., Phys. Rev. B {\bf 68}, 134505 (2003)] to the analysis of
curves. We have found that the purely normal-state model reproduces all
the following experimental features: (a) the parabolic -dependence of
in the high- region (above the conventional pseudogap temperature),
(b) the emergence and the nearly voltage-independent position of the "humps"
from this parabolic behavior lowering the temperature, and (c) the crossing of
the absolute curves at a characteristic voltage . Our
findings indicate that conventional tunneling can be at the origin of most of
the uncommon features of the c axis transport in
BiSrCaCuO. We have compared our calculations to
experimental data taken in severely underdoped and slightly underdoped
BiSrCaCuO small mesas. We have found good agreement
between the data and the calculations, without any shift of the calculated
dI/dV on the vertical scale. In particular, in the normal state (above
) simple tunneling reproduces the experimental dI/dV quantitatively.
Below quantitative discrepancies are limited to a simple rescaling of
the voltage in the theoretical curves by a factor 2. The need for such
modifications remains an open question, that might be connected to a change of
the charge of a fraction of the carriers across the pseudogap opening.Comment: 7 pages, 5 figure
Using mixed methods for analysing culture : The Cultural Capital and Social Exclusion project
This paper discusses the use of material generated in a mixed method investigation into cultural tastes and practices, conducted in Britain from 2003 to 2006, which employed a survey, focus groups and household interviews. The study analysed the patterning of cultural life across a number of fields, enhancing the empirical and methodological template provided by Bourdieu’s Distinction. Here we discuss criticisms of Bourdieu emerging from subsequent studies of class, culture and taste, outline the arguments related to the use of mixed methods and present illustrative results from the analysis of these different types of data. We discuss how the combination of quantitative and qualitative methods informed our analysis of cultural life in contemporary Britain. No single method was able to shed light on all aspects of our inquiry, lending support to the view that mixing methods is the most productive strategy for the investigation of complex social phenomena
Quintessential inflation from 5D warped product spaces on a dynamical foliation
Assuming the existence of a 5D purely kinetic scalar field on the class of
warped product spaces we investigate the possibility of mimic both an
inflationary and a quintessential scenarios on 4D hypersurfaces, by
implementing a dynamical foliation on the fifth coordinate instead of a
constant one. We obtain that an induced chaotic inflationary scenario with a
geometrically induced scalar potential and an induced quasi-vacuum equation of
state on 4D dynamical hypersurfaces is possible. While on a constant foliation
the universe can be considered as matter dominated today, in a family of 4D
dynamical hypersurfaces the universe can be passing for a period of accelerated
expansion with a deceleration parameter nearly -1. This effect of the dynamical
foliation results negligible at the inflationary epoch allowing for a chaotic
scenario and becomes considerable at the present epoch allowing a
quintessential scenario.Comment: 7 pages, 1 figure Accepted for publication in Modern Physics Letters
- …