73,198 research outputs found

    Dynamical Lorentz and CPT symmetry breaking in a 4D four-fermion model

    Full text link
    In a 4D chiral Thirring model we analyse the possibility that radiative corrections may produce spontaneous breaking of Lorentz and CPT symmetry. By studying the effective potential, we verified that the chiral current ψˉγμγ5ψ\bar\psi\gamma^{\mu} \gamma_5 \psi may assume a nonzero vacuum expectation value which triggers the Lorentz and CPT violations. Furthermore, by making fluctuations on the minimum of the potential we dynamically induce a bumblebee like model containing a Chern-Simons term.Comment: Small modifications in the text and new references added, 12 pages, 4 figures, revtex4. To appear in Phys. Rev.

    Flag-Dipole Spinor Fields in ESK Gravities

    Full text link
    We consider the Riemann-Cartan geometry as a basis for the Einstein-Sciama-Kibble theory coupled to spinor fields: we focus on f(R)f(R) and conformal gravities, regarding the flag-dipole spinor fields, type-(4) spinor fields under the Lounesto classification. We study such theories in specific cases given for instance by cosmological scenarios: we find that in such background the Dirac equation admits solutions that are not Dirac spinor fields, but in fact the aforementioned flag-dipoles ones. These solutions are important from a theoretical perspective, as they evince that spinor fields are not necessarily determined by their dynamics, but also a discussion on their structural (algebraic) properties must be carried off. Furthermore, the phenomenological point of view is shown to be also relevant, since for isotropic Universes they circumvent the question whether spinor fields do undergo the Cosmological Principle.Comment: 18 pages, improved versio

    Meson decay in a corrected 30P3^P_0 model

    Full text link
    Extensively applied to both light and heavy meson decay and standing as one of the most successful strong decay models is the 30P3^P_0 model, in which qqˉq\bar{q} pair production is the dominant mechanism. The pair production can be obtained from the non-relativistic limit of a microscopic interaction Hamiltonian involving Dirac quark fields. The evaluation of the decay amplitude can be performed by a diagrammatic technique for drawing quark lines. In this paper we use an alternative approach which consists in a mapping technique, the Fock-Tani formalism, in order to obtain an effective Hamiltonian starting from same microscopic interaction. An additional effect is manifest in this formalism associated to the extended nature of mesons: bound-state corrections. A corrected 30P3^P_0 is obtained and applied, as an example, to b1ωπb_{1}\to\omega\pi and a1ρπa_{1}\to\rho\pi decays.Comment: 3 figures. To appear in Physical Review

    Large angle magnetization dynamics measured by time-resolved ferromagnetic resonance

    Full text link
    A time-resolved ferromagnetic resonance technique was used to investigate the magnetization dynamics of a 10 nm thin Permalloy film. The experiment consisted of a sequence of magnetic field pulses at a repetition rate equal to the magnetic systems resonance frequency. We compared data obtained by this technique with conventional pulsed inductive microwave magnetometry. The results for damping and frequency response obtained by these two different methods coincide in the limit of a small angle excitation. However, when applying large amplitude field pulses, the magnetization had a non-linear response. We speculate that one possible cause of the nonlinearity is related to self-amplification of incoherence, known as the Suhl instabilities.Comment: 23 pages, 8 figures, submitted to PR
    corecore