93,494 research outputs found

    Measurements of surface impedance of superconductors as a function of frequency in microwave range

    Full text link
    We report measurements of the complex resistivity in YBCO and MgB2_2 thin films over a continuous frequency spectrum in the microwave range, making use of a Corbino disk geometry. The paper mainly focuses on the extraction of the resistivity from raw data, displaying data analysis procedure and its limits of validity. We obtain and show resistivity curves as a function of frequency and temperature denoting a frequency dependent widening of the superconducting transition.Comment: 12 pages, 7 figures. Extended and revised version of cond-mat/0307143 (2003

    Physical constraints on interacting dark energy models

    Full text link
    Physical limits on the equation-of-state (EoS) parameter of a dark energy component non-minimally coupled with the dark matter field are examined in light of the second law of thermodynamics and the positiveness of entropy. Such constraints are combined with observational data sets of type Ia supernovae, baryon acoustic oscillations and the angular acoustic scale of the cosmic microwave background to impose restrictions on the behaviour of the dark matter/dark energy interaction. Considering two EoS parameterisations of the type w=w0+waζ(z)w = w_0 + w_a\zeta(z), we derive a general expression for the evolution of the dark energy density and show that the combination of thermodynamic limits and observational data provide tight bounds on the w0−waw_0 - w_a parameter space.Comment: 7 pages, 4 figures. Accepted for publication in European Physical Journal

    Vortex state microwave response in superconducting cuprates and MgB2_2

    Full text link
    We investigate the physics of the microwave response in YBa2_{2}Cu3_{3}O7−δ_{7-\delta}, SmBa2_{2}Cu3_{3}O7−δ_{7-\delta} and MgB2_{2} in the vortex state. We first recall the theoretical basics of vortex-state microwave response in the London limit. We then present a wide set of measurements of the field, temperature, and frequency dependences of the vortex state microwave complex resistivity in superconducting thin films, measured by a resonant cavity and by swept-frequency Corbino disk. The combination of these techniques allows for a comprehensive description of the microwave response in the vortex state in these innovative superconductors. In all materials investigated we show that flux motion alone cannot take into account all the observed experimental features, neither in the frequency nor in the field dependence. The discrepancy can be resolved by considering the (usually neglected) contribution of quasiparticles to the response in the vortex state. The peculiar, albeit different, physics of the superconducting materials here considered, namely two-band superconductivity in MgB2_{2} and superconducting gap with lines of nodes in cuprates, give rise to a substantially increased contribution of quasiparticles to the field-dependent microwave response. With careful combined analysis of the data it is possible to extract or infer many interesting quantities related to the vortex state, such as the temperature-dependent characteristic vortex frequency and vortex viscosity, the field dependence of the quasiparticle density, the temperature dependence of the σ\sigma-band superfluid density in MgB2_{2}Comment: 51 pages, 27 figures, to appear as a book chapter (Nova Science

    Surface impedance of superconductive thin films as a function of frequency in microwave range

    Full text link
    We report measurements of the complex resistivity in YBCOYBCO and MgB2MgB_2 thin films over a continuous frequency spectrum in the microwave range, making use of a Corbino disk geometry. The paper mainly focuses on the extraction of the resistivity from raw data, displaying data analisys procedure and its limits of validity. We obtain and show resistivity curves as a function of frequency and temperature denoting a frequency dependent widening of the superconductive transition.Comment: 8 pages, Latex, 5 figure

    Regular black holes in f(G)f(G) gravity

    Full text link
    In this work, we study the possibility of generalizing solutions of regular black holes with an electric charge, constructed in general relativity, for the f(G)f(G) theory, where GG is the Gauss-Bonnet invariant. This type of solution arises due to the coupling between gravitational theory and nonlinear electrodynamics. We construct the formalism in terms of a mass function and it results in different gravitational and electromagnetic theories for which mass function. The electric field of these solutions are always regular and the strong energy condition is violated in some region inside the event horizon. For some solutions, we get an analytical form for the f(G)f(G) function. Imposing the limit of some constant going to zero in the f(G)f(G) function we recovered the linear case, making the general relativity a particular case.Comment: 22 pages, 25 figures.Version published in EPJ
    • …
    corecore