72,628 research outputs found
Physical constraints on interacting dark energy models
Physical limits on the equation-of-state (EoS) parameter of a dark energy
component non-minimally coupled with the dark matter field are examined in
light of the second law of thermodynamics and the positiveness of entropy. Such
constraints are combined with observational data sets of type Ia supernovae,
baryon acoustic oscillations and the angular acoustic scale of the cosmic
microwave background to impose restrictions on the behaviour of the dark
matter/dark energy interaction. Considering two EoS parameterisations of the
type , we derive a general expression for the evolution
of the dark energy density and show that the combination of thermodynamic
limits and observational data provide tight bounds on the parameter
space.Comment: 7 pages, 4 figures. Accepted for publication in European Physical
Journal
Metallic Continuum Quantum Ferromagnets at Finite Temperature
We study via renormalization group (RG) and large N methods the problem of
continuum SU(N) quantum Heisenberg ferromagnets (QHF) coupled to gapless
electrons. We establish the phase diagram of the dissipative problem and
investigate the changes in the Curie temperature, magnetization, and magnetic
correlation length due to dissipation and both thermal and quantum
fluctuations. We show that the interplay between the topological term (Berry's
phase) and dissipation leads to non-trivial effects for the finite temperature
critical behavior.Comment: Corrected typos, new discussion of T=0 results, to appear in
Europhys. Let
Cryopreservation of Byrsonima intermedia embryos followed by room temperature thawing
Byrsonima intermedia is a shrub from the Brazilian Cerrado with medicinal properties. The storage of biological material at ultra-low temperatures (-196°C) is termed cryopreservation and represents a promising technique for preserving plant diversity. Thawing is a crucial step that follows cryopreservation. The aim of this work was to cryopreserve B. intermedia zygotic embryos and subsequently thaw them at room temperature in a solution rich in sucrose. The embryos were decontaminated and desiccated in a laminar airflow hood for 0-4 hours prior to plunging into liquid nitrogen. The embryo moisture content (% MC) during dehydration was assessed. Cryopreserved embryos were thawed in a solution rich in sucrose at room temperature, inoculated in a germination medium and maintained in a growth chamber. After 30 days, the embryo germination was evaluated. No significant differences were observed between the different embryo dehydration times, where they were dehydrated for at least one hour. Embryos with a MC between 34.3 and 20.3% were germinated after cryopreservation. In the absence of dehydration, all embryos died following cryopreservation. We conclude that B. intermedia zygotic embryos can be successfully cryopreserved and thawed at room temperature after at least one hour of dehydration in a laminar airflow bench
- …