91,391 research outputs found
Dilatation operator and the Super Yang-Mills duals of open strings on AdS Giant Gravitons
We study the one-loop anomalous dimensions of the Super Yang-Mills dual
operators to open strings ending on AdS giant gravitons. AdS giant gravitons
have no upper bound for their angular momentum and we represent them by the
contraction of scalar fields, carrying the appropriate R-charge, with a totally
symmetric tensor. We represent the open string motion along AdS directions by
appending to the giant graviton operator a product of fields including
covariant derivatives. We derive a bosonic lattice Hamiltonian that describes
the mixing of these excited AdS giants operators under the action of the
one-loop dilatation operator of N=4 SYM. This Hamiltonian captures several
intuitive differences with respect to the case of sphere giant gravitons. A
semiclassical analysis of the Hamiltonian allows us to give a geometrical
interpretation for the labeling used to describe the fields products appended
to the AdS giant operators. It also allows us to show evidence for the
existence of continuous bands in the Hamiltonian spectrum.Comment: 28 page
Conceptual Design of a New Large Superconducting Toroid for IAXO, the New International AXion Observatory
The International AXion Observatory (IAXO) will incorporate a new generation
detector for axions, a hypothetical particle, which was postulated to solve one
of the puzzles arising in the standard model of particle physics, namely the
strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity
to the coupling between axions and photons of one order of magnitude beyond the
limits of the current state-of-the-art detector, represented by the CERN Axion
Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field
distributed over a very large volume to convert solar axions into x-ray
photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large
superconducting toroidal magnet is currently being designed at CERN to provide
the required magnetic field. The new toroid will be built up from eight, one
meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in
diameter and 22 m in length. It is designed to realize a peak magnetic field of
5.4 T with a stored energy of 500 MJ. The magnetic field optimization process
to arrive at maximum detector yield is described. In addition, force and stress
calculations are performed to select materials and determine their structure
and sizing. Conductor dimensionality, quench protection and the cryogenic
design are dealt with as well.Comment: 5 pages, 5 figures. To be published in IEEE Trans. Appl. Supercond.
23 (ASC 2012 conference special issue
Total correlations as fully additive entanglement monotones
We generalize the strategy presented in Refs. [1, 2], and propose general
conditions for a measure of total correlations to be an entanglement monotone
using its pure (and mixed) convex-roof extension. In so doing, we derive
crucial theorems and propose a concrete candidate for a total correlations
measure which is a fully additive entanglement monotone.Comment: 8 pages, 3 figures. Title changed, new result
The Superconducting Toroid for the New International AXion Observatory (IAXO)
IAXO, the new International AXion Observatory, will feature the most
ambitious detector for solar axions to date. Axions are hypothetical particles
which were postulated to solve one of the puzzles arising in the standard model
of particle physics, namely the strong CP (Charge conjugation and Parity)
problem. This detector aims at achieving a sensitivity to the coupling between
axions and photons of one order of magnitude beyond the limits of the current
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap
toroids, a large superconducting toroid is being designed. The toroid comprises
eight, one meter wide and twenty one meters long racetrack coils. The assembled
toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250
tons. The useful field in the bores is 2.5 T while the peak magnetic field in
the windings is 5.4 T. At the operational current of 12 kA the stored energy is
500 MJ. The racetrack type of coils are wound with a reinforced Aluminum
stabilized NbTi/Cu cable and are conduction cooled. The coils optimization is
shortly described as well as new concepts for cryostat, cold mass, supporting
structure and the sun tracking system. Materials selection and sizing,
conductor, thermal loads, the cryogenics system and the electrical system are
described. Lastly, quench simulations are reported to demonstrate the system's
safe quench protection scheme.Comment: To appear in IEEE Trans. Appl. Supercond. MT 23 issue. arXiv admin
note: substantial text overlap with arXiv:1308.2526, arXiv:1212.463
New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory
Axions are hypothetical particles that were postulated to solve one of the
puzzles arising in the standard model of particle physics, namely the strong CP
(Charge conjugation and Parity) problem. The new International AXion
Observatory (IAXO) will incorporate the most promising solar axions detector to
date, which is designed to enhance the sensitivity to the axion-photon coupling
by one order of magnitude beyond the limits of the current state-of-the-art
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions into X-ray photons. Inspired by the successful realization of the ATLAS
barrel and end-cap toroids, a very large superconducting toroid is currently
designed at CERN to provide the required magnetic field. This toroid will
comprise eight, one meter wide and twenty one meter long, racetrack coils. The
system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field
is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization
process to arrive at maximum detector yield is described. In addition,
materials selection and their structure and sizing has been determined by force
and stress calculations. Thermal loads are estimated to size the necessary
cryogenic power and the concept of a forced flow supercritical helium based
cryogenic system is given. A quench simulation confirmed the quench protection
scheme.Comment: Accepted for publication in Adv. Cryo. Eng. (CEC/ICMC 2013 special
issue
- …