4 research outputs found
A case study on model checking and deductive verification techniques of safety-critical software
Due to the growing importance of the role that software plays in critical systems, software verification process is required to be rigorous and reliable. It is well-known that test activities cannot detect all the defects in safety-critical real time software systems. One way of complementing the test activities is through formal verification. Two useful formal verification techniques are deductive verification and model checking, which allow programs to be statically checked for defects. This paper explores both techniques, by employing the CBMC and Jessie/Frama-C tools in the context of a safety-critical real time software system.This work is funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-020486
Using abstract interpretation to produce dependable aerospace control software
In the context of software dependability, the software veri- fication process has an important role. Formal verification of programs is an activity that can be inserted in this process to improve software reliability. This paper presents the defini- tion of an approach that employs a formal verification tech- nique based on abstract interpretation. The main goal is to apply this technique as a formal activity in the software veri- fication process to help software engineers identify programs faults. The applicability of the proposed approach is demon- strated by a case study based on embedded aerospace control software. The results obtained from its use show that abstract interpretation can contribute to software dependability.Fundação para a Ciência e a Tecnologia (FCT
Formal verification with Frama-C: a case study in the space software domain
With the increasing importance of software in the aerospace field, as evidenced by its growing size and complexity, a rigorous and reliable software verification and validation process must be applied to ensure conformance with the strict requirements of this software. Although important, traditional validation activities such as testing and simulation can only provide a partial verification of behavior in critical real-time software systems, and thus, formal verification is an alternative to complement these activities. Two useful formal software verification approaches are deductive verification and abstract interpretation, which analyze programs statically to identify defects. This paper explores abstract interpretation and deductive verification by employing Frama-C's value analysis and Jessie plug-ins to verify embedded aerospace control software. The results indicate that both approaches can be employed in a software verification process to make software more reliable.This work was supported in part by the Brazilian Space Agency under Grant 20VB.info:eu-repo/semantics/publishedVersio