3 research outputs found

    Prediction techniques on FPGA for latency reduction on tactile internet

    Get PDF
    Tactile Internet (TI) is a new internet paradigm that enables sending touch interaction information and other stimuli, which will lead to new human-to-machine applications. However, TI applications require very low latency between devices, as the system’s latency can result from the communication channel, processing power of local devices, and the complexity of the data processing techniques, among others. Therefore, this work proposes using dedicated hardware-based reconfigurable computing to reduce the latency of prediction techniques applied to TI. Finally, we demonstrate that prediction techniques developed on field-programmable gate array (FPGA) can minimize the impacts caused by delays and loss of information. To validate our proposal, we present a comparison between software and hardware implementations and analyze synthesis results regarding hardware area occupation, throughput, and power consumption. Furthermore, comparisons with state-of-the-art works are presented, showing a significant reduction in power consumption of ≈1300× and reaching speedup rates of up to ≈52×

    Hardware Architecture Proposal for TEDA Algorithm to Data Streaming Anomaly Detection

    No full text
    The amount of data in real-time, such as time series and streaming data, available today continues to grow. Being able to analyze this data the moment it arrives can bring an immense added value. However, it also requires a lot of computational effort and new acceleration techniques. As a possible solution to this problem, this paper proposes a hardware architecture for Typicality and Eccentricity Data Analytic (TEDA) algorithm implemented on Field Programmable Gate Arrays (FPGA) for use in data streaming anomaly detection. TEDA is based on a new approach to outlier detection in the data stream context. The suggested design has a full parallel input of N elements and a 3-stage pipelined architecture to reduce the critical path and thus optimize the throughput. In order to validate the proposals, results of the occupation and throughput of the proposed hardware are presented. The design reached a speed of up to 693x, compared to other software platforms, with a throughput of up to 10.96 MSPs (Mega Sample Per second), using a small portion of the target FPGA resources. Besides, the bit accurate simulation results are also presented. This work is a pioneer in the hardware implementation of the TEDA technique in FPGA. The project aims to Xilinx Virtex-6 xc6vlx240t-1ff1156 as the target FPGA

    Convolutional Neural Network Applied to SARS-CoV-2 Sequence Classification

    No full text
    COVID-19, the illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus belonging to the Coronaviridade family, a single-strand positive-sense RNA genome, has been spreading around the world and has been declared a pandemic by the World Health Organization. On 17 January 2022, there were more than 329 million cases, with more than 5.5 million deaths. Although COVID-19 has a low mortality rate, its high capacities for contamination, spread, and mutation worry the authorities, especially after the emergence of the Omicron variant, which has a high transmission capacity and can more easily contaminate even vaccinated people. Such outbreaks require elucidation of the taxonomic classification and origin of the virus (SARS-CoV-2) from the genomic sequence for strategic planning, containment, and treatment of the disease. Thus, this work proposes a high-accuracy technique to classify viruses and other organisms from a genome sequence using a deep learning convolutional neural network (CNN). Unlike the other literature, the proposed approach does not limit the length of the genome sequence. The results show that the novel proposal accurately distinguishes SARS-CoV-2 from the sequences of other viruses. The results were obtained from 1557 instances of SARS-CoV-2 from the National Center for Biotechnology Information (NCBI) and 14,684 different viruses from the Virus-Host DB. As a CNN has several changeable parameters, the tests were performed with forty-eight different architectures; the best of these had an accuracy of 91.94 ± 2.62% in classifying viruses into their realms correctly, in addition to 100% accuracy in classifying SARS-CoV-2 into its respective realm, Riboviria. For the subsequent classifications (family, genera, and subgenus), this accuracy increased, which shows that the proposed architecture may be viable in the classification of the virus that causes COVID-19
    corecore