9 research outputs found
Active layer and permafrost thermal regime in a patterned ground soil in Maritime Antarctica, and relationship with climate variability models
Permafrost and active layer studies are important to understand and predict regional climate changes. The objectives of this work were: i) to characterize the soil thermal regime (active layer thickness and permafrost formation) and its interannual variability and ii) to evaluate the influence of different climate variability modes to the observed soil thermal regime in a patterned ground soil in Maritime Antarctica. The study was carried out at Keller Peninsula, King George Island, Maritime Antarctica. Six soil temperatures probes were installed at different depths (10, 30 and 80 cm) in the polygon center (Tc) and border (Tb) of a patterned ground soil. We applied cross-correlation analysis and standardized series were related to the Antarctic Oscillation Index (AAO). The estimated active layer thickness was approximately 0.75 cm in the polygon border and 0.64 cm in the center, indicating the presence of permafrost (within 80 cm). Results indicate that summer and winter temperatures are becoming colder and warmer, respectively. Considering similar active layer thickness, the polygon border presented greater thawing days, resulting in greater vulnerability to warming, cooling faster than the center, due to its lower volumetric heat capacity (Cs). Cross-correlation analysis indicated statistically significant delay of 1 day (at 10 cm depth) in the polygon center, and 5 days (at 80 cm depth) for the thermal response between atmosphere and soil. Air temperature showed a delay of 5 months with the climate variability models. The influence of southern winds from high latitudes, in the south facing slopes, favored freeze in the upper soil layers, and also contributed to keep permafrost closer to the surface. The observed cooling trend is linked to the regional climate variability modes influenced by atmospheric circulation, although longer monitoring period is required to reach a more precise scenario
Improving water productivity in moisture-limited rice-based cropping systems through incorporation of maize and mungbean: A modelling approach
Crop and water productivities of rice-based cropping systems and cropping patterns in the irrigated lowlands of Sri Lanka have not been researched to the degree warranted given their significance as critical food sources. In order to reduce this knowledge gap, we simulated the water requirement for rice, maize, and mungbean under rice-based cropping systems in the Dry Zone of Sri Lanka. We evaluated the best combinations of crops for minimum water usage while reaching higher crop and water productivities. We also assessed the risk of cultivating mungbean as the third season/sandwich crop (i.e. rice-mungbean-rice) in different regions in Sri Lanka. In the simulation modelling exercise, APSIMOryza (rice), APSIM-maize and APSIM-mungbean modules were parameterised and validated for varieties grown widely in Sri Lanka. Moreover, crop productivities and supplementary irrigation requirement were tested under two management scenarios i.e. Scenario 1: irrigate when plant available water content in soil fell below 25% of maximum, and Scenario 2: irrigate at 7-day intervals (current farmer practice). The parameterised, calibrated and validated model estimated the irrigation water requirement (number of pairs of observations (n) = 14, R2 > 0.9, RMSE = 66 mm season−1 ha−1), and grain yield of maize (n = 37, R2 > 0.95, RMSE = 353 kg ha−1) and mungbean (n = 26, R2 > 0.98, RMSE = 75 kg ha−1) with a strong fit in comparison with observed data, across years, cultivating seasons, regions, management conditions and varieties. Simulated water requirement during the cropping season reduced in the order of rice (1180–1520 mm) > maize and mungbean intercrop = maize sole crop (637–672 mm) > mungbean sole crop (345 mm). The water productivity of the system (crop yield per unit water) could be increased by over 65% when maize or mungbean extent was increased. The most efficient crop combinations to maximise net return were diversification of the land extent as (i) 50% to rice and 50% to mungbean sole crops, or (ii) 25%, 25% and 50% to rice, maize and mungbean sole crops, respectively. Under situations where water availability is inadequate for rice, land extent could be cultivated to 50% maize and 50% mungbean as sole crops to ensure the maximum net return per unit irrigation water (115 Sri Lankan Rupees ha−1mm−1). Regions with high rainfall during the preceding rice cultivating season are expected to have minimum risk when incorporating a third season mungbean crop. Moisture loss through evapotranspiration from the third season mungbean crop was similar to that of a fallowed site with weeds.Authors acknowledge the funding received from the AusAIDCSIRO project “Improved climate forecasting to enhance food
security in Indian Ocean Rim countries” (AusAID Agreement 59553)
through the Agriculture Education Unit(AEU) ofthe Faculty of Agriculture, University of Peradeniya to conduct the study, and the
Department of Agriculture, Sri Lanka for providing the access to
collect secondary data on crop performances and management,
and weathe
Effect of the application of different water depths and nitrogen and potassium doses on quality of Tanzania grass
The objective of this study was to evaluate the effects of the application of different water depths and nitrogen and potassium doses in the quality of Tanzania grass, in the southern of the state of Tocantins. The experiment was conducted on strips of traditional sprinklers, and used, as treatments, a mixture of fertilizer combinations of N and K2O always in the ratio of 1 N:0.8 K2O. This study determined throughout the experiment: plant height (PH), the crude protein (CP) and neutral detergent fiber (NDF). The highest plant height obtained was 132.4 cm, with a fertilizer dose of 691.71 kg ha-1 in the proportion of N:0.8 K2O, in other words, 384.28 kg ha-1 of N and 307.43 kg ha-1 of K2O, and water depth of 80% of the ETc. The highest crude protein content was 12.2%, with the fertilizer dose application of 700 kg ha-1 yr-1 in the proportion of 1 N to 0.8 of K2O, in other words, 388.89 kg ha-1 of N and 311.11 kg ha-1 of K2O and absence of irrigation. The lowest level of neutral detergent fiber was 60.7% with the application of the smallest dose of fertilizer and highest water depth. It was concluded in this study that there was an increase in plant height by increasing the fertilizer dose and water depth. The crude protein content increased 5.4% in the dry season, by increasing the fertilizer dose and water depth. In the dry season, there was an increase of NDF content by 4.5% by increasing the application of fertilizer and water depth.Teve-se como objetivo neste trabalho avaliar os efeitos da aplicação de diferentes lâminas de água e doses de nitrogênio e potássio na qualidade do capim-Tanzânia, no sul do Estado do Tocantins. O experimento foi conduzido em faixas com aspersão convencional e aplicou-se, como tratamentos, uma mistura de adubo com combinações de doses de N e K2O sempre na relação de 1 N:0,8 K2O. Para o estudo, determinaram-se ao longo do experimento: a altura de plantas (PH) e os teores de proteína bruta (PB) e de fibra em detergente neutro (FDN). A maior altura de plantas obtida foi de 132,4 cm, com a dose de 691,71 kg ha-1 do adubo na proporção de 1 N para 0,8 de K2O, ou seja, 384,28 kg ha-1 de N e 307,43 kg ha-1 de K2O e lâmina de água de 80% da ETc. O maior teor de proteína bruta foi de 12,2%, com a aplicação da dose de 700 kg ha-1 ano-1 do adubo, na proporção de 1 N para 0,8 de K2O, ou seja, 388,89 kg ha-1 de N e 311,11 kg ha-1 de K2O e ausência de irrigação. O menor teor de fibra em detergente neutro foi de 60,7% com a aplicação da menor dose de adubo e da maior lâmina de água. Concluiu-se, neste trabalho, que houve aumento na altura das plantas, com o aumento da dose do adubo e da lâmina de irrigação. O teor de proteína bruta aumentou 5,4%, no período seco, com o incremento da dose de adubo e da lâmina de irrigação. No período seco, houve aumento do teor de FDN de 4,5% com o incremento da aplicação da dose de adubo e da lâmina de água
A Generic Solution for Agile Run-Time Inspection Middleware
Part 8: Run-Time (Re)configuration and InspectionInternational audienceContemporary middleware offers powerful abstractions to construct distributed software systems. However, when inspecting the software at run-time, these abstractions are no longer visible. While inspection, monitoring and management are increasingly important in our always-online world, they are often only possible in terms of the lower-level abstraction of the underlying platform. Due to the complexity of current programming languages and middleware, this low-level information is too complex to handle or understand.This paper presents a run-time inspection system based on dynamic model transformation capabilities that extends run-time entities with higher-level abstract views, in order to enable inspection in terms of the original and most relevant abstractions. Our solution is lightweight in terms of performance overhead and agile in the sense that it can selectively (and on-demand) generate these high-level views.Our prototype implementation has been applied to inspect distributed applications using RMI. In this case study, we inspect the distributed RMI system using our integrated overview over the collection of distributed objects that interact using remote method invocation
Estimativa do balanço de energia em cambarazal e pastagem no norte do Pantanal pelo método da razão de Bowen Estimate of energy balance in cambarazaland pasture in the north of Pantanal by Bowen ratio method
O estudo do balanço de energia de uma superfície vegetada e a atmosfera é importante para caracterizar o microclima local, identificar interações entre variáveis ambientais e a vegetação, e identificar efeitos das atividades antropogênicas. O objetivo deste trabalho foi estimar a variação sazonal do balanço de energia pelo método da razão de Bowen em uma área de vegetação monodominante de Cambará na RPPN SESC-Pantanal e uma área de pastagem na Fazenda Experimental da UFMT. Os componentes do balanço de energia apresentaram sazonalidade, com maiores médias na estação chuvosa nas duas áreas de estudo. No cambarazal houve maior variação do fluxo de calor latente da estação seca para a chuvosa que na pastagem. Entretanto, a variação sazonal do fluxo de calor sensível foi menor no cambarazal que na pastagem, devido ao efeito termo-regulador do cambarazal, em função da maior biomassa. A energia disponível aos dois sítios foi destinada prioritariamente em fluxo de calor latente, 80,0% no cambarazal e 56,6% na pastagem, seguido pelo fluxo de calor sensível, 19,1 e 42,9%, e pelo fluxo de calor no solo, 0,3 e 7,2%.<br>The energy balance study of a vegetated surface and atmosphere is important to characterize the local microclimate, identify interactions among environmental variables and the vegetation and to identify anthropogenic activities effects. The objective of this work was estimate the seasonality of energy balance by Bowen ratio method in a monodominant vegetation of Cambará area in the RPPN SESC-Pantanal and a pasture area in UFMT's Experimental Farm. The energy balance components presented seasonality, with larger averages at the rainy station in two areas of study. In the cambarazal was a higher variation of the latent heat flux of the dry season for the rainy season that in the pasture. However, the seasonal variation of the sensible heat flux in the cambarazal was lower than in the pasture, due to the thermo-regulatory effect in the cambarazal, according to the largest biomass. The available energy at two ranches was partitioned priority in latent heat flux, 80,0% in the cambarazal and 56,6% in the pasture, followed by the sensible heat flux, 19,1 and 42,9%, and by the soil heat flux, 0,3 and 7,2%