63,612 research outputs found

    Ricci dark energy in Chern-Simons modified gravity

    Full text link
    In this work, we have considered the Ricci dark energy model, where the energy density of the universe is proportional to the Ricci scalar curvature, in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas.Comment: 7 pages; to appear in EPJ

    On FRW Model in Conformal Teleparallel Gravity

    Full text link
    In this paper we use the conformal teleparallel gravity to study an isotropic and homogeneous Universe which is settled by the FRW metric. We solve the field equations and we obtain the behavior of some cosmological parameters such as scale factor, deceleration parameter and the energy density of the perfect fluid which is the matter field of our model. The field equations, that we called modified Friedmann equations, allow us to define a dark fluid, with dark energy density and dark pressure, responsible for the acceleration in the Universe.Comment: Accepted in EPJ

    What if the Masses of the First Two Quark Families are not Generated by the Standard Higgs?

    Full text link
    We point out that, in the context of the SM, V132+V232|V^2_{13}| + | V^2_{23}| is expected to be large, of order one. The fact that V132+V2321.6×103|V^2_{13}| + |V^2_{23}| \approx 1.6 \times 10^{-3} motivates the introduction of a symmetry S which leads to VCKM=1 ⁣ ⁣ ⁣IV_{CKM} ={1\>\!\!\!\mathrm{I}} , with only the third generation of quarks acquiring mass. We consider two scenarios for generating the mass of the first two quark generations and full quark mixing. One consists of the introduction of a second Higgs doublet which is neutral under S. The second scenario consists of assuming New Physics at a high energy scale , contributing to the masses of light quark generations, in an effective field theory approach. This last scenario leads to couplings of the Higgs particle to sss\overline s and ccc \overline c which are significantly enhanced with respect to those of the SM. In both schemes, one has scalar-mediated flavour- changing neutral currents which are naturally suppressed. Flavour violating top decays are predicted in the second scenario at the level \mbox{Br} (t \rightarrow h c ) \geq 5\times 10^{-5}.Comment: 11 pages, 1 figur

    Transport Processes in Metal-Insulator Granular Layers

    Full text link
    Tunnel transport processes are considered in a square lattice of metallic nanogranules embedded into insulating host to model tunnel conduction in real metal/insulator granular layers. Based on a simple model with three possible charging states (±\pm, or 0) of a granule and three kinetic processes (creation or recombination of a ±\pm pair, and charge transfer) between neighbor granules, the mean-field kinetic theory is developed. It describes the interplay between charging energy and temperature and between the applied electric field and the Coulomb fields by the non-compensated charge density. The resulting charge and current distributions are found to be essentially different in the free area (FA), between the metallic contacts, or in the contact areas (CA), beneath those contacts. Thus, the steady state dc transport is only compatible with zero charge density and ohmic resistivity in FA, but charge accumulation and non-ohmic behavior are \emph{necessary} for conduction over CA. The approximate analytic solutions are obtained for characteristic regimes (low or high charge density) of such conduction. The comparison is done with the measurement data on tunnel transport in related experimental systems.Comment: 10 pages, 11 figures, 1 reference corrected, acknowlegments adde

    Gauge fields in a string-cigar braneworld

    Get PDF
    In this work we investigate the properties of an Abelian gauge vector field in a thin and in a smoothed string-like braneworld, the so-called string-cigar model. This thick brane scenario satisfies the regularity conditions and it can be regarded as an interior and exterior string-like solution. The source undergoes a geometric Ricci flow which is connected to a variation of the bulk cosmological constant. The Ricci flow changes the width and amplitude of the massless mode at the brane core and recover the usual thin string-like behavior at large distances. By numerical means we obtain the Kaluza-Klein (KK) spectrum for both the thin brane and the string-cigar. It turns out that both models exhibit a mass gap between the massless and the massive modes and between the high and the low mass regimes. The KK modes are smooth near the brane and their amplitude are enhanced by the string-cigar core. The analogue Schr\"odinger potential is also tuned by the geometric flow.Comment: The discussion about the Kaluza-Klein spectrum of the gauge field was improved. Numerical analysis was adapted to the conventional notation on Kaluza-Klein number. Some graphics were modified for considering other notation. Results unchanged. References added. Corrected typos. 17 pages. 6 figures. To match version to appears in Physics Letters
    corecore