136 research outputs found

    Non-linear spin to charge conversion in mesoscopic structures

    Get PDF
    Motivated by recent experiments [Vera-Marun et al., arXiv:1109.5969], we formulate a non-linear theory of spin transport in quantum coherent conductors. We show how a mesoscopic constriction with energy-dependent transmission can convert a spin current injected by a spin accumulation into an electric signal, relying neither on magnetic nor exchange fields. When the transmission through the constriction is spin-independent, the spin-charge coupling is non-linear, with an electric signal that is quadratic in the accumulation. We estimate that gated mesoscopic constrictions have a sensitivity that allows to detect accumulations much smaller than a percent of the Fermi energy.Comment: 4 pages, 3 figure

    Magnetic bipolar transistor

    Get PDF
    A magnetic bipolar transistor is a bipolar junction transistor with one or more magnetic regions, and/or with an externally injected nonequilibrium (source) spin. It is shown that electrical spin injection through the transistor is possible in the forward active regime. It is predicted that the current amplification of the transistor can be tuned by spin.Comment: 4 pages, 2 figure

    Temperature dependent asymmetry of the nonlocal spin-injection resistance: evidence for spin non-conserving interface scattering

    Get PDF
    We report nonlocal spin injection and detection experiments on mesoscopic Co-Al2O3-Cu spin valves. We have observed a temperature dependent asymmetry in the nonlocal resistance between parallel and antiparallel configurations of the magnetic injector and detector. This strongly supports the existence of a nonequilibrium resistance that depends on the relative orientation of the detector magnetization and the nonequilibrium magnetization in the normal metal providing evidence for increasing interface spin scattering with temperature.Comment: 5 pages, 4 figures, accepted for publication in PRL, minor corrections (affiliation, acknowledgements, typo

    Dynamical Susceptibility in KDP-type Crysals above and below Tc II

    Full text link
    The path probability method (PPM) in the tetrahedron-cactus approximation is applied to the Slater-Takagi model with dipole-dipole interaction for KH2PO4-type hydrogen-bonded ferroelectric crystals in order to derive a small dip structure in the real part of dynamical susceptibility observed at the transition temperature Tc. The dip structure can be ascribed to finite relaxation times of electric dipole moments responsible for the first order transition with contrast to the critical slowing down in the second order transition. The light scattering intensity which is related to the imaginary part of dynamical susceptibility is also calculated above and below the transition temperature and the obtained central peak structure is consistent with polarization fluctuation modes in Raman scattering experiments.Comment: 8 pages, 11 figure

    Theory of thermal spin-charge coupling in electronic systems

    Get PDF
    The interplay between spin transport and thermoelectricity offers several novel ways of generating, manipulating, and detecting nonequilibrium spin in a wide range of materials. Here we formulate a phenomenological model in the spirit of the standard model of electrical spin injection to describe the electronic mechanism coupling charge, spin, and heat transport and employ the model to analyze several different geometries containing ferromagnetic (F) and nonmagnetic (N) regions: F, F/N, and F/N/F junctions which are subject to thermal gradients. We present analytical formulas for the spin accumulation and spin current profiles in those junctions that are valid for both tunnel and transparent (as well as intermediate) contacts. For F/N junctions we calculate the thermal spin injection efficiency and the spin accumulation induced nonequilibrium thermopower. We find conditions for countering thermal spin effects in the N region with electrical spin injection. This compensating effect should be particularly useful for distinguishing electronic from other mechanisms of spin injection by thermal gradients. For F/N/F junctions we analyze the differences in the nonequilibrium thermopower (and chemical potentials) for parallel and antiparallel orientations of the F magnetizations, as evidence and a quantitative measure of the spin accumulation in N. Furthermore, we study the Peltier and spin Peltier effects in F/N and F/N/F junctions and present analytical formulas for the heat evolution at the interfaces of isothermal junctions.Comment: to be published in PRB (in press), 19 pages, 19 figure

    Spin Currents Induced by Nonuniform Rashba-Type Spin-Orbit Field

    Full text link
    We study the spin relaxation torque in nonmagnetic or ferromagnetic metals with nonuniform spin-orbit coupling within the Keldysh Green's function formalism. In non-magnet, the relaxation torque is shown to arise when the spin-orbit coupling is not uniform. In the absence of an external field, the spin current induced by the relaxation torque is proportional to the vector chirality of Rashba-type spin-orbit field (RSOF). In the presence of an external field, on the other hand, spin relaxation torque arises from the coupling of the external field and vector chirality of RSOF. Our result indicates that spin-sink or source effects are controlled by designing RSOF in junctions.Comment: 3 figure

    Restrictions on modeling spin injection by resistor networks

    Full text link
    Because of the technical difficulties of solving spin transport equations in inhomogeneous systems, different resistor networks are widely applied for modeling spin transport. By comparing an analytical solution for spin injection across a ferromagnet - paramagnet junction with a resistor model approach, its essential limitations stemming from inhomogeneous spin populations are clarified.Comment: To be published in a special issue of Semicond. Sci. Technol., Guest editor Prof. G. Landweh

    Dynamic exchange coupling and Gilbert damping in magnetic multilayers

    Full text link
    We theoretically study dynamic properties of thin ferromagnetic films in contact with normal metals. Moving magnetizations cause a flow of spins into adjacent conductors, which relax by spin flip, scatter back into the ferromagnet, or are absorbed by another ferromagnet. Relaxation of spins outside the moving magnetization enhances the overall damping of the magnetization dynamics in accordance with the Gilbert phenomenology. Transfer of spins between different ferromagnets by these nonequilibrium spin currents leads to a long-ranged dynamic exchange interaction and novel collective excitation modes. Our predictions agree well with recent ferromagnetic-resonance experiments on ultrathin magnetic films.Comment: 15 pages, 3 figures, for MMM'02 proceeding

    Multi-terminal spin-dependent transport in ballistic carbon nanotubes

    Full text link
    We study theoretically nonlocal spin transport in a ballistic carbon nanotube contacted to two ferromagnetic leads and two normal-metal leads. When the magnetizations of the two ferromagnets are changed from a parallel to an antiparallel configuration, the circuit shows a hysteretic behavior which is specific to the few-channel regime. In the coherent limit, the amplitude of the magnetic signals is strongly enhanced due to resonance effects occurring inside the nanotube. Our calculations pave the way for experiments on low-dimensional nonlocal spin transport, which should give results remarkably different from the experiments realized so far in the multichannel diffusive incoherent regime.Comment: 9 pages, 8 figure

    Properties and preparation of ceramic insulators for spark plugs

    Get PDF
    Report describes in detail the preliminary experiments which were made on the conductivity of spark-plug insulators in order to develop a satisfactory comparative method for testing various spark-plug materials. Materials tested were cements, porcelain, feldspar, and quartz
    • …
    corecore