136 research outputs found
Non-linear spin to charge conversion in mesoscopic structures
Motivated by recent experiments [Vera-Marun et al., arXiv:1109.5969], we
formulate a non-linear theory of spin transport in quantum coherent conductors.
We show how a mesoscopic constriction with energy-dependent transmission can
convert a spin current injected by a spin accumulation into an electric signal,
relying neither on magnetic nor exchange fields. When the transmission through
the constriction is spin-independent, the spin-charge coupling is non-linear,
with an electric signal that is quadratic in the accumulation. We estimate that
gated mesoscopic constrictions have a sensitivity that allows to detect
accumulations much smaller than a percent of the Fermi energy.Comment: 4 pages, 3 figure
Magnetic bipolar transistor
A magnetic bipolar transistor is a bipolar junction transistor with one or
more magnetic regions, and/or with an externally injected nonequilibrium
(source) spin. It is shown that electrical spin injection through the
transistor is possible in the forward active regime. It is predicted that the
current amplification of the transistor can be tuned by spin.Comment: 4 pages, 2 figure
Temperature dependent asymmetry of the nonlocal spin-injection resistance: evidence for spin non-conserving interface scattering
We report nonlocal spin injection and detection experiments on mesoscopic
Co-Al2O3-Cu spin valves. We have observed a temperature dependent asymmetry in
the nonlocal resistance between parallel and antiparallel configurations of the
magnetic injector and detector. This strongly supports the existence of a
nonequilibrium resistance that depends on the relative orientation of the
detector magnetization and the nonequilibrium magnetization in the normal metal
providing evidence for increasing interface spin scattering with temperature.Comment: 5 pages, 4 figures, accepted for publication in PRL, minor
corrections (affiliation, acknowledgements, typo
Dynamical Susceptibility in KDP-type Crysals above and below Tc II
The path probability method (PPM) in the tetrahedron-cactus approximation is
applied to the Slater-Takagi model with dipole-dipole interaction for
KH2PO4-type hydrogen-bonded ferroelectric crystals in order to derive a small
dip structure in the real part of dynamical susceptibility observed at the
transition temperature Tc. The dip structure can be ascribed to finite
relaxation times of electric dipole moments responsible for the first order
transition with contrast to the critical slowing down in the second order
transition. The light scattering intensity which is related to the imaginary
part of dynamical susceptibility is also calculated above and below the
transition temperature and the obtained central peak structure is consistent
with polarization fluctuation modes in Raman scattering experiments.Comment: 8 pages, 11 figure
Theory of thermal spin-charge coupling in electronic systems
The interplay between spin transport and thermoelectricity offers several
novel ways of generating, manipulating, and detecting nonequilibrium spin in a
wide range of materials. Here we formulate a phenomenological model in the
spirit of the standard model of electrical spin injection to describe the
electronic mechanism coupling charge, spin, and heat transport and employ the
model to analyze several different geometries containing ferromagnetic (F) and
nonmagnetic (N) regions: F, F/N, and F/N/F junctions which are subject to
thermal gradients. We present analytical formulas for the spin accumulation and
spin current profiles in those junctions that are valid for both tunnel and
transparent (as well as intermediate) contacts. For F/N junctions we calculate
the thermal spin injection efficiency and the spin accumulation induced
nonequilibrium thermopower. We find conditions for countering thermal spin
effects in the N region with electrical spin injection. This compensating
effect should be particularly useful for distinguishing electronic from other
mechanisms of spin injection by thermal gradients. For F/N/F junctions we
analyze the differences in the nonequilibrium thermopower (and chemical
potentials) for parallel and antiparallel orientations of the F magnetizations,
as evidence and a quantitative measure of the spin accumulation in N.
Furthermore, we study the Peltier and spin Peltier effects in F/N and F/N/F
junctions and present analytical formulas for the heat evolution at the
interfaces of isothermal junctions.Comment: to be published in PRB (in press), 19 pages, 19 figure
Spin Currents Induced by Nonuniform Rashba-Type Spin-Orbit Field
We study the spin relaxation torque in nonmagnetic or ferromagnetic metals
with nonuniform spin-orbit coupling within the Keldysh Green's function
formalism. In non-magnet, the relaxation torque is shown to arise when the
spin-orbit coupling is not uniform. In the absence of an external field, the
spin current induced by the relaxation torque is proportional to the vector
chirality of Rashba-type spin-orbit field (RSOF). In the presence of an
external field, on the other hand, spin relaxation torque arises from the
coupling of the external field and vector chirality of RSOF. Our result
indicates that spin-sink or source effects are controlled by designing RSOF in
junctions.Comment: 3 figure
Restrictions on modeling spin injection by resistor networks
Because of the technical difficulties of solving spin transport equations in
inhomogeneous systems, different resistor networks are widely applied for
modeling spin transport. By comparing an analytical solution for spin injection
across a ferromagnet - paramagnet junction with a resistor model approach, its
essential limitations stemming from inhomogeneous spin populations are
clarified.Comment: To be published in a special issue of Semicond. Sci. Technol., Guest
editor Prof. G. Landweh
Dynamic exchange coupling and Gilbert damping in magnetic multilayers
We theoretically study dynamic properties of thin ferromagnetic films in
contact with normal metals. Moving magnetizations cause a flow of spins into
adjacent conductors, which relax by spin flip, scatter back into the
ferromagnet, or are absorbed by another ferromagnet. Relaxation of spins
outside the moving magnetization enhances the overall damping of the
magnetization dynamics in accordance with the Gilbert phenomenology. Transfer
of spins between different ferromagnets by these nonequilibrium spin currents
leads to a long-ranged dynamic exchange interaction and novel collective
excitation modes. Our predictions agree well with recent
ferromagnetic-resonance experiments on ultrathin magnetic films.Comment: 15 pages, 3 figures, for MMM'02 proceeding
Multi-terminal spin-dependent transport in ballistic carbon nanotubes
We study theoretically nonlocal spin transport in a ballistic carbon nanotube
contacted to two ferromagnetic leads and two normal-metal leads. When the
magnetizations of the two ferromagnets are changed from a parallel to an
antiparallel configuration, the circuit shows a hysteretic behavior which is
specific to the few-channel regime. In the coherent limit, the amplitude of the
magnetic signals is strongly enhanced due to resonance effects occurring inside
the nanotube. Our calculations pave the way for experiments on low-dimensional
nonlocal spin transport, which should give results remarkably different from
the experiments realized so far in the multichannel diffusive incoherent
regime.Comment: 9 pages, 8 figure
Properties and preparation of ceramic insulators for spark plugs
Report describes in detail the preliminary experiments which were made on the conductivity of spark-plug insulators in order to develop a satisfactory comparative method for testing various spark-plug materials. Materials tested were cements, porcelain, feldspar, and quartz
- …