54 research outputs found

    Constrained shuffled complex evolution algorithm and its application in the automatic calibration of Xinanjiang model

    Get PDF
    The Shuffled Complex Evolution—University of Arizona (SCE-UA) is a classical algorithm in the field of hydrology and water resources, but it cannot solve constrained optimization problems directly. Using penalty functions has been the preferred method to handle constraints, but the appropriate selection of penalty parameters and penalty functions can be challenging. To enhance the universality of the SCE-UA, we propose the Constrained Shuffled Complex Evolution Algorithm (CSCE) to conveniently and effectively solve inequality-constrained optimization problems. Its performance is compared with the SCE-UA using the adaptive penalty function (SCEA) on 14 test problems with inequality constraints. It is further compared with seven other algorithms on two test problems with low success rates. To demonstrate its effect in hydrologic model calibration, the CSCE is applied to the parameter optimization of the Xinanjiang (XAJ) model under synthetic data and observed data. The results indicate that the CSCE is more advantageous than the SCEA in terms of the success rate, stability, feasible rate, and convergence speed. It can guarantee the feasibility of the solution and avoid the problem of deep soil tension water capacity (WDM)<0 in the optimization process of the XAJ model. In the case of synthetic data, the CSCE can accurately find the theoretical optimal parameters of the XAJ model under the given constraints. In the case of observed data, the XAJ model optimized by the CSCE can effectively simulate the hourly rainfall-runoff events of the Hexi Basin and achieves mean Nash efficiency coefficients greater than 0.75 in the calibration period and the validation period

    Numerical heat transfer analysis of transcritical hydrocarbon fuel flow in a tube partially filled with porous media

    No full text
    Hydrocarbon fuel has been widely used in air-breathing scramjets and liquid rocket engines as coolant and propellant. However, possible heat transfer deterioration and threats from local high heat flux area in scramjet make heat transfer enhancement essential. In this work, 2-D steady numerical simulation was carried out to study different schemes of heat transfer enhancement based on a partially filled porous media in a tube. Both boundary and central layouts were analyzed and effects of gradient porous media were also compared. The results show that heat transfer in the transcritical area is enhanced at least 3 times with the current configuration compared to the clear tube. Besides, the proper use of gradient porous media also enhances the heat transfer compared to homogenous porous media, which could help to avoid possible over-temperature in the thermal protection

    Effect of mainstream oxygen concentration on supersonic film cooling and friction reduction performance using hydrocarbon fuel

    No full text
    One of the effective methods to simultaneously achieve the thermal protection and friction reduction requirement of a scramjet engine is the usage of fuel film cooling. As the combustion process inside the combustor proceeds, the oxygen concentration in the burnt gas gradually decreases and will influence the thermal and friction characteristics of the hydrocarbon film. Therefore, the effects of oxygen concentration in the mainstream on the hydrocarbon film are evaluated by numerical simulations based on RANS framework. The results indicate that the cooling performance of the hydrocarbon film is not sensitive to the oxygen concentration, although the fuel film burns more intense as the oxygen concentration increases. While the friction reduction performance is sensitive to the oxygen concentration. Specifically, about 10% friction reduction can be obtained for 10% oxygen in the mainstream compared to that of inert cases, and the wall friction can be further reduced by 30% for 20% oxygen. Further analysis reveals that the mechanism of the above two drag reductions is different. For weak boundary layer combustion, the decrease of the molecular viscosity contributes to the reduction of friction. While for significant boundary layer combustion, a lower near-wall velocity gradient is the main reason

    Effect of Time since Afforestation on Soil Organic Carbon Stock and Turnover Rate

    No full text
    Forests can accumulate large quantities of SOC, but the trend in SOC accumulation with increasing stand age is inconclusive. In this study, we selected five plots in northwestern China: four stands of artificially planted Robinia pseudoacacia of different ages (5, 20, 40, and 56 years old), and a plot of wasteland as the control. The results showed that the SOC contents decreased, whereas δ13C values increased, with soil depth. The soil total nitrogen (TN) content and the carbon/phosphorus (C/P) ratio increased significantly with increasing stand age. The SOC storage in the 0–30 cm soil layer did not differ significantly among stands of different ages. However, SOC storage in the 0–100 and 30–100 cm soil layers was significantly higher in the 40- and 56-year-old stands than in 5-year-old stands. The SOC turnover rate decreased gradually over the 40 years after planting and then rapidly increased between 40 and 56 years after planting. The SOC stocks were most strongly correlated with TN and the C/P ratio, and SOC turnover was most closely related to soil porosity. Afforestation significantly improved soil properties to enhance SOC sequestration, but it took a long time for stored SOC to accumulate in this study area

    Thermodynamic Performance Comparisons of Ideal Brayton Cycles Integrated with High Temperature Fuel Cells as Power Sources on Aircraft

    No full text
    Developing hybrid electric aircraft is propitious to reducing carbon dioxide emissions and fuel consumption. Combustion engines coupled with solid oxide fuel cells are proposed for aircraft propulsion systems, where the compressor is powered by fuel cells instead of turbines. The thermal cycle of the new engine is obviously different from that of conventional combustion engines and can be characterized in the temperature entropy diagram under some reasonable assumptions, which were analyzed and investigated. Performance parameters, such as the specific thrust, are derived and can be expressed by several fundamental thermal parameters. Three different cycles integrating Brayton cycles and SOFC are shown. The main conclusions are as follows: (1) The maximum operating pressure ratio of the Brayton cycles integrated with fuel cells is 32. The maximum thermal efficiency of the cycle at the lowest combustion temperature is 82.2%, while that of the BC is 65.1% at the high combustion temperature. (2) The new cycles can not work if the combustion temperature is lower than 1350 K. Otherwise, the fuel utilization will be too huge
    • …
    corecore