2 research outputs found

    The Australian multidomain approach to reduce dementia risk by protecting brain health with lifestyle intervention study (AU-ARROW): A study protocol for a single-blind, multi-site, randomized controlled trial

    Get PDF
    INTRODUCTION: The Finnish Geriatric Intervention Study (FINGER) led to the global dementia risk reduction initiative: World-Wide FINGERS (WW-FINGERS). As part of WW-FINGERS, the Australian AU-ARROW study mirrors aspects of FINGER, as well as US-POINTER. METHOD: AU-ARROW is a randomized, single-blind, multisite, 2-year clinical trial (n = 600; aged 55–79). The multimodal lifestyle intervention group will engage in aerobic exercise, resistance training and stretching, dietary advice to encourage MIND diet adherence, BrainHQ cognitive training, and medical monitoring and health education. The Health Education and Coaching group will receive occasional health education sessions. The primary outcome measure is the change in a global composite cognitive score. Extra value will emanate from blood biomarker analysis, positron emission tomography (PET) imaging, brain magnetic resonance imaging (MRI), and retinal biomarker tests. DISCUSSION: The finalized AU-ARROW protocol is expected to allow development of an evidence-based innovative treatment plan to reduce cognitive decline and dementia risk, and effective transfer of research outcomes into Australian health policy. Highlights: Study protocol for a single-blind, randomized controlled trial, the AU-ARROW Study. The AU-ARROW Study is a member of the World-Wide FINGERS (WW-FINGERS) initiative. AU-ARROW\u27s primary outcome measure is change in a global composite cognitive score. Extra significance from amyloid PET imaging, brain MRI, and retinal biomarker tests. Leading to development of an innovative treatment plan to reduce cognitive decline

    Ketone bodies mediate alterations in brain energy metabolism and biomarkers of Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia. AD is a progressive neurodegenerative disorder characterized by cognitive dysfunction, including learning and memory deficits, and behavioral changes. Neuropathology hallmarks of AD such as amyloid beta (Aβ) plaques and neurofibrillary tangles containing the neuron-specific protein tau is associated with changes in fluid biomarkers including Aβ, phosphorylated tau (p-tau)-181, p-tau 231, p-tau 217, glial fibrillary acidic protein (GFAP), and neurofilament light (NFL). Another pathological feature of AD is neural damage and hyperactivation of astrocytes, that can cause increased pro-inflammatory mediators and oxidative stress. In addition, reduced brain glucose metabolism and mitochondrial dysfunction appears up to 15 years before the onset of clinical AD symptoms. As glucose utilization is compromised in the brain of patients with AD, ketone bodies (KBs) may serve as an alternative source of energy. KBs are generated from the β-oxidation of fatty acids, which are enhanced following consumption of ketogenic diets with high fat, moderate protein, and low carbohydrate. KBs have been shown to cross the blood brain barrier to improve brain energy metabolism. This review comprehensively summarizes the current literature on how increasing KBs support brain energy metabolism. In addition, for the first time, this review discusses the effects of ketogenic diet on the putative AD biomarkers such as Aβ, tau (mainly p-tau 181), GFAP, and NFL, and discusses the role of KBs on neuroinflammation, oxidative stress, and mitochondrial metabolism
    corecore