1,844 research outputs found

    Kinematic fingerprint of core-collapsed globular clusters

    Full text link
    Dynamical evolution drives globular clusters toward core collapse, which strongly shapes their internal properties. Diagnostics of core collapse have so far been based on photometry only, namely on the study of the concentration of the density profiles. Here we present a new method to robustly identify core-collapsed clusters based on the study of their stellar kinematics. We introduce the \textit{kinematic concentration} parameter, ckc_k, the ratio between the global and local degree of energy equipartition reached by a cluster, and show through extensive direct NN-body simulations that clusters approaching core collapse and in the post-core collapse phase are strictly characterized by ck>1c_k>1. The kinematic concentration provides a suitable diagnostic to identify core-collapsed clusters, independent from any other previous methods based on photometry. We also explore the effects of incomplete radial and stellar mass coverage on the calculation of ckc_k and find that our method can be applied to state-of-art kinematic datasets.Comment: Accepted for publication in MNRAS Lette

    Automated Data Processing and the Issue of Privacy

    Get PDF

    Increasing Writing Center Visibility: The Political Rationale

    Get PDF
    This presentation and paper offer a political rationale for the Purdue Writing Lab Repository project. It discusses the need to make writing center research institutionally viable, and how the repository can contribute both to preserving and disseminating writing center scholarship and to presenting writing center administration as institutional research

    Models of Individual Blue Stragglers

    Full text link
    This chapter describes the current state of models of individual blue stragglers. Stellar collisions, binary mergers (or coalescence), and partial or ongoing mass transfer have all been studied in some detail. The products of stellar collisions retain memory of their parent stars and are not fully mixed. Very high initial rotation rates must be reduced by an unknown process to allow the stars to collapse to the main sequence. The more massive collision products have shorter lifetimes than normal stars of the same mass, while products between low mass stars are long-lived and look very much like normal stars of their mass. Mass transfer can result in a merger, or can produce another binary system with a blue straggler and the remnant of the original primary. The products of binary mass transfer cover a larger portion of the colour-magnitude diagram than collision products for two reasons: there are more possible configurations which produce blue stragglers, and there are differing contributions to the blended light of the system. The effects of rotation may be substantial in both collision and merger products, and could result in significant mixing unless angular momentum is lost shortly after the formation event. Surface abundances may provide ways to distinguish between the formation mechanisms, but care must be taking to model the various mixing mechanisms properly before drawing strong conclusions. Avenues for future work are outlined.Comment: Chapter 12, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
    • …
    corecore