4 research outputs found
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Singlet oxygen and natural substrates: functional polyunsaturated models for the photooxidative degradation of carotenoids
The primary chemical reactions of singlet molecular oxygen with polyunsaturated carotenoids are the focus of this research report. Model compounds that exhibit electronic properties and substituent pattern similar to natural carotenes, xanthophylls or apocarotenoids, respectively, were investigated with regard to photooxygenation reactivity. For dienes and trienes as substrates, high tandem reactivity was observed and hydroperoxy-endoperoxides were isolated as the secondary products of singlet oxygen reaction. The electronic gem-effect on the regioselectivity of the ene reaction is conserved also in vinylogous positions and thus appears to originate from a radical-stabilizing effect. In an attempt to combine different peroxide groups derived from natural products as a tool for new pharmaceutically active products, a dyade synthesis of an artemisinine-safranol with subsequent singlet oxygen addition was realized
ChemInform Abstract: Singlet Oxygen and Natural Substrates: Functional Polyunsaturated Models for the Photooxidative Degradation of Carotenoids
The primary chemical reactions of singlet molecular oxygen with polyunsaturated carotenoids are the focus of this research report. Model compounds that exhibit electronic properties and substituent pattern similar to natural carotenes, xanthophylls or apocarotenoids, respectively, were investigated with regard to photooxygenation reactivity. For dienes and trienes as substrates, high tandem reactivity was observed and hydroperoxy-endoperoxides were isolated as the secondary products of singlet oxygen reaction. The electronic gem-effect on the regioselectivity of the ene reaction is conserved also in vinylogous positions and thus appears to originate from a radical-stabilizing effect. In an attempt to combine different peroxide groups derived from natural products as a tool for new pharmaceutically active products, a dyade synthesis of an artemisinine-safranol with subsequent singlet oxygen addition was realized