674 research outputs found
Implementation of Diabetes Prevention in Health Care Organizations: Best Practice Recommendations
Approximately 1 in 3 American adults has prediabetes, a condition characterized by blood glucose levels that are above normal, not in the type 2 diabetes ranges, and that increases the risk of developing type 2 diabetes. Evidence-based treatments can be used to prevent or delay type 2 diabetes in adults with prediabetes. The American Medical Association (AMA) has collaborated with health care organizations across the country to build sustainable diabetes prevention strategies. In 2017, the AMA formed the Diabetes Prevention Best Practices Workgroup (DPBP) with representatives from 6 health care organizations actively implementing diabetes prevention. Each organization had a unique strategy, but all included the National Diabetes Prevention Program lifestyle change program as a core evidence-based intervention. DPBP established the goal of disseminating best practices to guide other health care organizations in implementing diabetes prevention and identifying and managing patients with prediabetes. Workgroup members recognized similarities in some of their basic steps and considerations and synthesized their practices to develop best practice recommendations for 3 strategy maturity phases. Recommendations for each maturity phase are classified into 6 categories: (1) organizational support; (2) workforce and funding; (3) promotion and dissemination; (4) clinical integration and support; (5) evaluation and outcomes; (6) and program. As the burden of chronic disease grows, prevention must be prioritized and integrated into health care. These maturity phases and best practice recommendations can be used by any health care organization committed to diabetes prevention. Further research is suggested to assess the impact and adoption of diabetes prevention best practices
Logarithmic corrections and soft photon phenomenology in the multipole model of the nucleon form factors
We analyzed the presently available experimental data on nucleon
electromagnetic form factors within a multipole model based on dispersion
relations. A good fit of the data is achieved by considering the coefficients
of the multipole expansions as logarithmic functions of the momentum transfer
squared. The superconvergence relations, applied to this coefficients, makes
the model agree with unitary constraints and pQCD asymptotics for the Dirac and
Pauli form factors. The soft photon emission is proposed as a mechanism
responsible for the difference between the Rosenbluth, polarization and
beam--target--asymmetry data. It is shown, that the experimentally measured
cross sections depend not only on the Dirac and Pauli form factors, but also on
the average number of the photons emitted. For proton this number is shown to
be different for different types of experimental measurements and then
estimated phenomenologically. For neutron the same mechanism predicts, that the
data form different types of experiments must coincide with high accuracy. A
joint fit of all the experimental data reproduce the dependence with the
accuracy . Predictions of the model, that 1) the ratios of the
proton form factors are different for Rosenbluth, polarization and
beam--target--asymmetry experiments and 2) similar ratios are nearly the same
for neutron, can be used for experimental verification of the model.Comment: 14 pages in 2-column format, 4 figures, references added, typos
corrected, minor changes in the text, accepted in Eur. Phys. Journal
Neural Network Parameterizations of Electromagnetic Nucleon Form Factors
The electromagnetic nucleon form-factors data are studied with artificial
feed forward neural networks. As a result the unbiased model-independent
form-factor parametrizations are evaluated together with uncertainties. The
Bayesian approach for the neural networks is adapted for chi2 error-like
function and applied to the data analysis. The sequence of the feed forward
neural networks with one hidden layer of units is considered. The given neural
network represents a particular form-factor parametrization. The so-called
evidence (the measure of how much the data favor given statistical model) is
computed with the Bayesian framework and it is used to determine the best form
factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the
prior assumptions is added. The manuscript contains 4 new figures and 2 new
tables (32 pages, 15 figures, 2 tables
The ratio of proton's electric to magnetic form factors measured by polarization transfer
The ratio of the proton's elastic electromagnetic form factors was obtained
by measuring the transverse and longitudinal polarizations of recoiling protons
from the elastic scattering of polarized electrons with unpolarized protons.
The ratio of the electric to magnetic form factor is proportional to the ratio
of the transverse to longitudinal recoil polarizations. The ratio was measured
over a range of four-momentum transfer squared between 0.5 and 3.5 GeV-squared.
Simultaneous measurement of transverse and longitudinal polarizations in a
polarimeter provides good control of the systematic uncertainty. The results
for the ratio of the proton's electric to magnetic form factors show a
systematic decrease with increasing four momentum squared, indicating for the
first time a marked difference in the spatial distribution of charge and
magnetization currents in the proton.Comment: 5 pages, 2 figures, version of paper after corrections due to
referees comments and shortened by removing one figure for Physical Review
Letter
Nucleon electromagnetic form factors in a quark-gluon core model
We study the nucleon electromagnetic form factors in a quark-gluon core model
framework, which can be viewed as an extension of the Isgur-Karl model of
baryons. Using this picture we derive nucleon electromagnetic dipole form
factors at low Q^2 and the deviation from the dipole form at high Q^2, that are
consistent with the existing experimental data.Comment: 5 pages, 3 figure
Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags
The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the
partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data
sample was collected with the CDF detector at the Fermilab Tevatron collider
during 1992 - 1995 by triggering on the existence of two lepton candidates in
an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) =
1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the
measured decay length and reconstructed momentum of the l- D*+ system. The
charge of the lepton in the final state identifies the flavor of the anti-B0
meson at its decay. The second lepton in the event is used to infer the flavor
of the anti-B0 meson at production. We measure the oscillation frequency to be
Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is
statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
Search for New Particles Decaying to top-antitop in proton-antiproton collisions at squareroot(s)=1.8 TeV
We use 106 \ipb of data collected with the Collider Detector at Fermilab to
search for narrow-width, vector particles decaying to a top and an anti-top
quark. Model independent upper limits on the cross section for narrow, vector
resonances decaying to \ttbar are presented. At the 95% confidence level, we
exclude the existence of a leptophobic \zpr boson in a model of
topcolor-assisted technicolor with mass M_{\zpr} 480 \gev for natural
width = 0.012 M_{\zpr}, and M_{\zpr} 780 \gev for =
0.04 M_{\zpr}.Comment: The CDF Collaboration, submitted to PRL 25-Feb-200
Double Diffraction Dissociation at the Fermilab Tevatron Collider
We present results from a measurement of double diffraction dissociation in
collisions at the Fermilab Tevatron collider. The production cross
section for events with a central pseudorapidity gap of width
(overlapping ) is found to be [] at [630]
GeV. Our results are compared with previous measurements and with predictions
based on Regge theory and factorization.Comment: 10 pages, 4 figures, using RevTeX. Submitted to Physical Review
Letter
A Measurement of the Differential Dijet Mass Cross Section in p-pbar Collisions at sqrt{s}=1.8 TeV
We present a measurement of the cross section for production of two or more
jets as a function of dijet mass, based on an integrated luminosity of 86 pb^-1
collected with the Collider Detector at Fermilab. Our dijet mass spectrum is
described within errors by next-to-leading order QCD predictions using CTEQ4HJ
parton distributions, and is in good agreement with a similar measurement from
the D0 experiment.Comment: 18 pages including 2 figures and 3 tables. Submitted to Phys. Rev. D
Rapid Communication
Search for Gluinos and Scalar Quarks in Collisions at TeV using the Missing Energy plus Multijets Signature
We have performed a search for gluinos (\gls) and squarks (\sq) in a data
sample of 84 pb of \ppb collisions at = 1.8 TeV, recorded by
the Collider Detector at Fermilab, by investigating the final state of large
missing transverse energy and 3 or more jets, a characteristic signature in
R-parity-conserving supersymmetric models. The analysis has been performed
`blind', in that the inspection of the signal region is made only after the
predictions from Standard Model backgrounds have been calculated. Comparing the
data with predictions of constrained supersymmetric models, we exclude gluino
masses below 195 \gev (95% C.L.), independent of the squark mass. For the case
\msq \approx \mgls, gluino masses below 300 \gev are excluded.Comment: 7 pages, 3 figure
- …