4 research outputs found
Impact of quantitative CT texture analysis on the outcome of CT-guided bone biopsy
Texture analysis can provide new imaging-based biomarkers. Texture analysis derived from computed tomography (CT) might be able to better characterize patients undergoing CT-guided percutaneous bone biopsy. The present study evaluated this and correlated texture features with bioptic outcome in patients undergoing CT-guided bone biopsy. Overall, 123 patients (89 female patients, 72.4 %) were included into the present study. All patients underwent CT-guided percutaneous bone biopsy with an 11 Gauge coaxial needle. Clinical parameters and quantitative imaging features were investigated. Random forest classifier was used to predict a positive biopsy result. Overall, 69 patients had osteolytic metastasis (56.1 %) and 54 had osteoblastic metastasis (43.9 %). The overall positive biopsy rate was 72 %. The developed radiomics model demonstrated a prediction accuracy of a positive biopsy result with an AUC of 0.75 [95 %CI 0.65 – 0.85]. In a subgroup of breast cancer patients, the model achieved an AUC of 0.85 [95 %CI 0.73 – 0.96]. In the subgroup of non-breast cancer patients, the signature achieved an AUC of 0.80 [95 %CI 0.60 – 0.99]. Quantitative CT imaging findings comprised of conventional and texture features can aid to predict the bioptic result of CT-guided bone biopsies. The developed radiomics signature aids in clinical decision-making, and could identify patients at risk for a negative biopsy