2,067 research outputs found

    The Statistical Physics of Athermal Materials

    Full text link
    At the core of equilibrium statistical mechanics lies the notion of statistical ensembles: a collection of microstates, each occurring with a given a priori probability that depends only on a few macroscopic parameters such as temperature, pressure, volume, and energy. In this review article, we discuss recent advances in establishing statistical ensembles for athermal materials. The broad class of granular and particulate materials is immune from the effects of thermal fluctuations because the constituents are macroscopic. In addition, interactions between grains are frictional and dissipative, which invalidates the fundamental postulates of equilibrium statistical mechanics. However, granular materials exhibit distributions of microscopic quantities that are reproducible and often depend on only a few macroscopic parameters. We explore the history of statistical ensemble ideas in the context of granular materials, clarify the nature of such ensembles and their foundational principles, highlight advances in testing key ideas, and discuss applications of ensembles to analyze the collective behavior of granular materials

    Age-related changes of apoptotic cell death in human lymphocytes

    Get PDF
    Apoptosis seems to be involved in immunosenescence associated with aging. Moreover, in lymphocytes (PBL) of patients with Alzheimer's disease, an increased susceptibility to the apoptotic pathway has been described possibly due to impaired protection of oxidative stress. Accordingly, it seemed to be of particular interest to investigate the contribution of normal aging to the susceptibility from human lymphocytes to programmed cell death. We could show that PBL from elderly individuals (>60 years) accumulate apoptosing cells to a significant higher extent in spontaneous and activation-induced cell death compared to younger controls (<35 years). Treatment with the oxidative stressor 2-deoxy-D-ribose or with agonistic-CD95-antibody pronounced this effect even more implicating a higher sensitivity to reactive oxygen species and a higher functional CD95 expression, respectively. In addition, expression of the activation markers HLA-DR and CD95 was significantly increased in CD3+-cells of aged subjects, while expression of CD25 did not seem to be affected by age. Expression of Bcl-2 was increased in aging and correlated with the number of apoptotic cells

    Age-related increase of oxidative stress-induced apoptosis in mice prevention by Ginkgo biloba extract (EGb761)

    Get PDF
    Enhanced apoptosis and elevated levels of reactive oxygen species (ROS) play a major role in aging. In addition, several neurodegenerative diseases are associated with increased oxidative stress and apoptosis in neuronal tissue. Antioxidative treatment has neuro-protective effects. The aim of the present study was to evaluate changes of susceptibility to apoptotic cell death by oxidative stress in aging and its inhibition by the antioxidant Ginkgo biloba extract EGb761. We investigated basal and ROS-induced levels of apoptotic lymphocytes derived from the spleen in young (3 months) and old (24 months) mice. ROS were induced by 2-deoxy-D-ribose (dRib) that depletes the intracellular pool of reduced glutathione. Lymphocytes from aged mice accumulate apoptotic cells to a significantly higher extent under basal conditions compared to cells from young mice. Treatment with dRib enhanced this difference, implicating a higher sensitivity to ROS in aging. Apoptosis can be reduced in vitro by treatment with EGb761. In addition, mice were treated daily with 100mg/kg EGb761 per os over a period of two weeks. ROS-induced apoptosis was significantly reduced in the EGb761 group. Interestingly, this effect seemed to be more pronounced in old mice

    Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations

    Get PDF
    Alzheimer's disease-related mutations in the presenilin-1 gene (PS1) are leading to an elevated production of neurotoxic beta-amyloid 1-42 and may additionally enhance oxidative stress. Here, we provide in vivo evidence indicating that brains of transgenic mice expressing different human Alzheimer-linked PS1 mutations exhibit a reduced activity of two antioxidant enzymes. For this purpose, mice transgenic for human PS1 and for single and multiple PS1 mutations were generated. Mice with multiple PS1 mutations showed a significantly decreased activity of the antioxidant enzymes Cu/Zn superoxide dismutase and glutathione reductase already at an age of 3-4 months. As expected, this effect was less pronounced for the mice with a single PS1 mutation. By contrast, animals bearing normal human PS1 showed significantly elevated enzyme activities relative to non-transgenic littermate controls

    Carotenoids - Effective Radical Scavengers for Healthy and Beautiful Skin

    Get PDF
    Free radicals are involved in various diseases and skin aging. To reduce and prevent this risk, our body produces antioxidants that can neutralize free radicals. However, some antioxidants need to be taken up with food, so a balanced and varied diet is essential for human health and beauty, along with sufficient exercise. Vegetables, especially curly kale, show very good antioxidative capacity due to the presence of carotenoids. As the recommended daily intake of vegetables is usually not consumed, dietary supplements are a good possibility to ingest carotenoids in a controlled and natural way. The positive effect of carotenoid-based dietary supplements on the skin has already been shown in several studies on healthy volunteers. Innovative non-invasive measuring methods have shown that oil extracts from vegetables significantly reduce not only free radicals in the skin but also the age-related breakdown of collagen and have a positive effect on skin parameters such as wrinkle volume. Thus, a balanced mixture of different natural carotenoids contributes to maintaining health and beauty

    Effects of EGb 761® Ginkgo biloba extract on mitochondrial function and oxidative stress

    Get PDF
    As major sources of reactive oxygen species (ROS), mitochondrial structures are exposed to high concentrations of ROS and may therefore be particularly susceptible to oxidative damage. Mitochondrial damage could play a pivotal role in the cell death decision. A decrease in mitochondrial energy charge and redox state, loss of transmembrane potential (depolarization), mitochondrial respiratory chain impairment, and release of substances such as calcium and cytochrome c all contribute to apoptosis. These mitochondrial abnormalities may constitute a part of the spectrum of chronic oxidative stress in Alzheimer's disease. Accumulation of amyloid beta (Abeta) in form of senile plaques is also thought to play a central role in the pathogenesis of Alzheimer's disease mediated by oxidative stress. In addition, increasing evidence shows that Abeta generates free radicals in vitro, which mediate the toxicity of this peptide. In our study, PC12 cells were used to examine the protective features of EGb 761(definition see editorial) on mitochondria stressed with hydrogen peroxide and antimycin, an inhibitor of complex III. In addition, we investigated the efficacy of EGb 761 in Abeta-induced MTT reduction in PC12 cells. Moreover, we examined the effects of EGb 761 on ROS levels and ROS-induced apoptosis in lymphocytes from aged mice after in vivo administration. Here, we will report that EGb 761 was able to protect mitochondria from the attack of hydrogen peroxide, antimycin and Abeta. Furthermore, EGb 761 reduced ROS levels and ROS-induced apoptosis in lymphocytes from aged mice treated orally with EGb 761 for 2 weeks. Our data further emphasize neuroprotective properties of EGb 761, such as protection against Abeta-toxicity, and antiapoptotic properties, which are probably due to its preventive effects on mitochondria

    Alzheimer's disease-like alterations in peripheral cells from presenilin-1 transgenic mice

    Get PDF
    Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Expression of PS1 mutations in cell culture systems and in primary neurons from transgenic mice increases their vulnerability to cell death. Interestingly, enhanced vulnerability to cell death has also been demonstrated for peripheral lymphocytes from AD patients. We now report that lymphocytes from PS1 mutant transgenic mice show a similar hypersensitivity to cell death as do peripheral cells from AD patients and several cell culture systems expressing PS1 mutations. The cell death-enhancing action of mutant PS1 was associated with increased production of reactive oxygen species and altered calcium regulation, but not with changes of mitochondrial cytochrome c. Our study further emphasizes the pathogenic role of mutant PS1 and may provide the fundamental basis for new efforts to close the gap between studies using neuronal cell lines transfected with mutant PS1, neurons from transgenic animals, and peripheral cells from AD patients. Copyright 2001 Academic Press

    Sweeping the Space of Admissible Quark Mass Matrices

    Get PDF
    We propose a new and efficient method of reconstructing quark mass matrices from their eigenvalues and a complete set of mixing observables. By a combination of the principle of NNI (nearest neighbour interaction) bases which are known to cover the general case, and of the polar decomposition theorem that allows to convert arbitrary nonsingular matrices to triangular form, we achieve a parameterization where the remaining freedom is reduced to one complex parameter. While this parameter runs through the domain bounded by a circle with radius R determined by the up-quark masses around the origin in the complex plane one sweeps the space of all mass matrices compatible with the given set of data.Comment: 18 page

    Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coal-bearing sediments offshore Shimokita Peninsula, Japan (IODP Site C0020)

    Get PDF
    Sediments recovered at Integrated Ocean Drilling Program (IODP) Site C0020, in a fore‐arc basin offshore Shimokita Peninsula, Japan, include numerous coal beds (0.3–7 m thick) that are associated with a transition from a terrestrial to marine depositional environment. Within the primary coal‐bearing unit (∼2 km depth below seafloor) there are sharp increases in magnetic susceptibility in close proximity to the coal beds, superimposed on a background of consistently low magnetic susceptibility throughout the remainder of the recovered stratigraphic sequence. We investigate the source of the magnetic susceptibility variability and characterize the dominant magnetic assemblage throughout the entire cored record, using isothermal remanent magnetization (IRM), thermal demagnetization, anhysteretic remanent magnetization (ARM), iron speciation, and iron isotopes. Magnetic mineral assemblages in all samples are dominated by very low‐coercivity minerals with unblocking temperatures between 350 and 580°C that are interpreted to be magnetite. Samples with lower unblocking temperatures (300–400°C), higher ARM, higher‐frequency dependence, and isotopically heavy δ56Fe across a range of lithologies in the coal‐bearing unit (between 1925 and 1995 mbsf) indicate the presence of fine‐grained authigenic magnetite. We suggest that iron‐reducing bacteria facilitated the production of fine‐grained magnetite within the coal‐bearing unit during burial and interaction with pore waters. The coal/peat acted as a source of electron donors during burial, mediated by humic acids, to supply iron‐reducing bacteria in the surrounding siliciclastic sediments. These results indicate that coal‐bearing sediments may play an important role in iron cycling in subsiding peat environments and if buried deeply through time, within the subsequent deep biosphere
    corecore