629 research outputs found

    Harmonics generation in electron-ion collisions in a short laser pulse

    Full text link
    Anomalously high generation efficiency of coherent higher field-harmonics in collisions between {\em oppositely charged particles} in the field of femtosecond lasers is predicted. This is based on rigorous numerical solutions of a quantum kinetic equation for dense laser plasmas which overcomes limitations of previous investigations.Comment: 4 pages, 4 eps-figures include

    Dispersion in a relativistic degenerate electron gas

    Full text link
    Relativistic effects on dispersion in a degenerate electron gas are discussed by comparing known response functions derived relativistically (by Jancovici) and nonrelativistically (by Lindhard). The main distinguishing feature is one-photon pair creation, which leads to logarithmic singularities in the response functions. Dispersion curves for longitudinal waves have a similar tongue-like appearance in the relativistic and nonrelativistic case, with the main relativistic effects being on the Fermi speed and the cutoff frequency. For transverse waves the nonrelativistic treatment has a nonphysical feature near the cutoff frequency for large Fermi momenta, and this is attributed to an incorrect treatment of the electron spin. We find (with two important provisos) that one-photon pair creation is allowed in superdense plasmas, implying relatively strong coupling between transverse waves and pair creation.Comment: 17 pages, 9 figures. Submitted to Physical Review

    Pore-scale mechanisms of gas flow in tight sand reservoirs

    Full text link
    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate

    Quantum kinetic theory of the filamentation instability

    Full text link
    The quantum electromagnetic dielectric tensor for a multi species plasma is re-derived from the gauge invariant Wigner-Maxwell system and presented under a form very similar to the classical one. The resulting expression is then applied to a quantum kinetic theory of the electromagnetic filamentation instability. Comparison is made with the quantum fluid theory including a Bohm pressure term, and with the cold classical plasma result. A number of analytical expressions are derived for the cutoff wave vector, the largest growth rate and the most unstable wave vector

    True Dielectric and Ideal Conductor in Theory of the Dielectric Function for Coulomb System

    Full text link
    On the basis of the exact relations the general formula for the static dielectric permittivity e(q,0) for Coulomb system is found in the region of small wave vectors q. The obtained formuladescribes the dielectric function e(q,0) of the Coulomb system in both states in the "metallic" state and in the "dielectric" one. The parameter which determines possible states of the Coulomb system - from the "true" dielectric till the "ideal" conductor is found. The exact relation for the pair correlation function for two-component system of electrons and nuclei g_ei(r) is found for the arbitrary thermodynamic parameters.Comment: 5 pages, no figure

    Planar Heterostructure Graphene -- Narrow-Gap Semiconductor -- Graphene

    Full text link
    We investigate a planar heterostructure composed of two graphene films separated by a narrow-gap semiconductor ribbon. We show that there is no the Klein paradox when the Dirac points of the Brillouin zone of graphene are in a band gap of a narrow-gap semiconductor. There is the energy range depending on an angle of incidence, in which the above-barrier damped solution exists. Therefore, this heterostructure is a "filter" transmitting particles in a certain range of angles of incidence upon a potential barrier. We discuss the possibility of an application of this heterostructure as a "switch".Comment: 9 pages, 2 figure

    Theory of transverse spin dynamics in a polarized Fermi liquid and an itinerant ferromagnet

    Full text link
    The linear equations for transverse spin dynamics in a weakly polarized degenerate Fermi liquid with arbitrary relationship between temperature and polarization are derived from Landau-Silin phenomenological kinetic equation with general form of two-particle collision integral. Unlike the previous treatment where Fermi velocity and density of states have been taken as constants independent of polarization here we made derivation free from this assumption. The obtained equations are applicable for description of spin dynamics in paramagnetic Fermi liquid with finite polarization as well in an itinerant ferromagnet. In both cases transverse spin wave frequency is found to be proportional to the square of the wave vector with complex constant of proportionality (diffusion coefficient) such that the damping has a finite value at T=0. The polarization dependence of the diffusion coefficient is found to be different for a polarized Fermi liquid and for an itinerant ferromagnet. These conclusions are confirmed by derivation of transverse spin wave dispersion law in frame of field theoretical methods from the integral equation for the vortex function. It is shown that similar derivation taking into consideration the divergency of static transverse susceptibility also leads to the same attenuating spin wave spectrum.Comment: 7 pages, no figure

    Boundary States in Graphene Heterojunctions

    Full text link
    A new type of states in graphene-based planar heterojunctions has been studied in the envelope wave function approximation. The condition for the formation of these states is the intersection between the dispersion curves of graphene and its gap modification. This type of states can also occur in smooth graphene-based heterojunctions.Comment: 5 pages, 3 figure
    corecore