254 research outputs found
Driving Manufacturing Companies toward Industry 5.0: A Strategic Framework for Process Technological Sustainability Assessment (P-TSA)
This study explores the complex nexus between technological innovation, Industry 4.0's transformative paradigm, and the emerging concept of Industry 5.0, highlighting the critical role of integrating sustainability into factories to enhance organizational competitiveness. In this context, confusion arises between the terms "sustainable technologies" and "technological sustainability" due to two factors: the misuse of the terms as synonyms and the misattribution of conceptual meaning to each term. To clarify this ambiguity, this study validates a conceptual framework for technological sustainability by examining the processes of a ceramic manufacturing company. This assessment highlights the potential of technological sustainability and its associated measurement model to facilitate the transition from Industry 4.0 to Industry 5.0. This research provides fundamental insights into technological sustainability and serves as a guide for future empirical efforts aimed at achieving a balanced and sustainable integration of technology into manufacturing practices
Use of Foundry Sands in the Production of Ceramic and Geopolymers for Sustainable Construction Materials
The aim of this research was to evaluate the possibility of reusing waste foundry sands derived from the production of cast iron as a secondary raw material for the production of building materials obtained both by high-temperature (ceramic tiles and bricks) and room-temperature (binders such as geopolymers) consolidation. This approach can reduce the current demand for quarry sand and/or aluminosilicate precursors from the construction materials industries. Samples for porcelain stoneware and bricks were produced, replacing the standard sand contained in the mixtures with waste foundry sand in percentages of 10%, 50%, and 100% by weight. For geopolymers, the sand was used as a substitution for metakaolin (30, 50, 70 wt%) as an aluminosilicate precursor rather than as an aggregate to obtain geopolymer pastes. Ceramic samples obtained using waste foundry sand were characterized by tests for linear shrinkage, water absorption, and colorimetry. Geopolymers formulations, produced with a Si/Al ratio of 1.8 and Na/Al = 1, were characterized to evaluate their chemical stability through measurements of pH and ionic conductivity, integrity in water, compressive strength, and microstructural analysis. The results show that the addition of foundry sand up to 50% did not significantly affect the chemical-physical properties of the ceramic materials. However, for geopolymers, acceptable levels of chemical stability and mechanical strength were only achieved when using samples made with 30% foundry sand as a replacement for metakaolin
Physical-chemical characterization of a galvanic sludge and its inertization by vitrification using container glass
Several industrial processes produce large amounts of heavy metals-rich wastes, which could be considered as "trash-can raw materials". The incorporation in ceramic systems can be regarded as a key process to permanently incorporate hazardous heavy metals in stable matrixes. In particular the aim of this work is to prepare and evaluate environmental risk assessment of coloured glass and glass-ceramic with the addition of chromium(III) galvanic sludge having a high content of Cr2O3 (15.91 wt%). Trivalent chromium compounds generally have low toxicity while hexavalent chromium is recognized by the International Agency for Research on Cancer and by the US Toxicology Program as a pulmonary carcinogen. The sludge has been characterized by ICP -AES chemical analysis, powder XRD diffraction, DTA, SEM, leaching test after different thermal treatments ranging from 400°C to 1200°C. Batch compositions were prepared by mixing this sludge with glass containers. The glass container composition is rich in SiO2 (69.89 wt%), Na 2O (12.32 wt%) and CaO (11.03 wt%), while the sludge has a high amount of CaO (42.90 wt%) and Cr2O3 (15.91 wt%). The vitrification was carried out at 1450°C in an electrical melting furnace for 2 h followed by quenching in water or on graphite mould. Chromium incorporation mechanisms, vitrification processability, effect of initial Cr oxidation state, and product performance were investigated. In particular toxic characterization by leaching procedure and chemical durability studies of the glasses and glass-ceramics were used to evaluate the leaching of heavy metals (in particular of Cr). The results indicate that all the glasses obtained were inert and the heavy metals were immobilized
Robust area coverage with connectivity maintenance
Robot swarms herald the ability to solve complex tasks using a large collection of simple devices. However, engineering a robotic swarm is far from trivial, with a major hurdle being the definition of the control laws leading to the desired globally coordinated behavior. Communication is a key element for coordination and it is considered one of the current most important challenges for swarm robotics. In this paper, we study the problem of maintaining robust swarm connectivity while performing a coverage task based on the Voronoi tessellation of an area of interest. We implement our methodology in a team of eight Khepera IV robots. With the assumptions that robots have a limited sensing and communication range - and cannot rely on centralized processing - we propose a tri-objective control law that outperforms other simpler strategies (e.g. a potential-based coverage) in terms of network connectivity, robustness to failure, and area coverage
Industry 4.0 and smart data as enablers of the circular economy in manufacturing: Product re-engineering with circular eco-design
The digital transformation of manufacturing firms, in addition to making operations more efficient, offers important opportunities both to promote the transition to a circular economy and to experiment with new techniques for designing smarter and greener products. This study integrates Industry 4.0 technologies, smart data, Life Cycle Assessment methodology, and material microstructural analysis techniques to develop and apply a circular eco-design model that has been implemented in the Italian ceramic tile manufacturing industry. The model has been initially adopted in a simulation environment to define five different scenarios of raw material supply, alternative to the current production one. The scenarios were then validated operationally at laboratory scale and in a pilot environment, demonstrating that a proper selection of raw material transport systems significantly improves the environmental performance of the ceramic product. Both the results of the laboratory tests and of the pre-industrial experiments have demonstrated the technological feasibility of the solutions identified with circular eco-design, enabling the re-engineering of the ceramic product as the fifth of the 6Rs of the circular economy. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
Immobilization of Monolayer Protected Lipophilic Gold Nanorods on a Glass Surface
We present a novel process of immobilization of gold nanorods (GNRs) on a glass surface. Wedemonstrate that by exploiting monolayer protection of the GNRs, their unusual opticalproperties can be completely preserved. UV–visible spectroscopy and atomic forcemicroscopy analysis are used to reveal the optical and morphological properties of monolayerprotected immobilized lipophilic GNRs, and molecular dynamics simulations are used toelucidate their surface molecule arrangements
LAKE SHOREZONE FUNCTIONALITY INDEX (SFI) A tool for the definition of ecological quality as indicated by Directive 2000/60/CE
www.appa.provincia.tn.it/binary/pat_appa/pubblicazioni/IFP_Manual_english_ver2.1310115028.pd
Influence of domestic and environmental weathering in the self-cleaning performance and durability of TiO2 photocatalytic coatings
Weathering of photocatalytic TiO2 coatings represents an important issue for the successful application of TiO2-
based self-cleaning materials. Photocatalytic efficiency of the as-prepared materials is crucial for commercialization;
however, changes in the coating performance due to weathering become a critical factor for practical
applications. Moreover, chemical durability should be considered as weathering can promote the release of
photocatalyst nanoparticles, which can pollute the environment and be hazardous for human health. In this
study, two photocatalytic TiO2 coatings with different microstructures (namely compact and mesoporous) were
exposed to chemical treatments to simulate domestic and environmental weathering. Results show that dense
TiO2 coatings with a slow photocatalytic activity are suitable for domestic applications as minimum leaching of
photoactive material was observed. Conversely, once exposed to chemical solutions commonly present in domestic
environments, the initially highly active mesoporous TiO2 coatings showed a dramatic drop of the selfcleaning
performance and a significant release of nanoparticles in the surrounding environment. It is expected
that the results reported here will be of particular relevance for the construction sector, as the manuscript
discloses important knowledge for the development of TiO2-based self-cleaning materials once exposed to indoor
or outdoor environments
Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes
Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR) domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6-(Hsp90)2-Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes
LAKE SHOREZONE FUNCTIONALITY INDEX (SFI) A tool for the definition of ecological quality as indicated by Directive 2000/60/CE
www.appa.provincia.tn.it/binary/pat_appa/pubblicazioni/IFP_Manual_english_ver2.1310115028.pd
- …