44 research outputs found

    Vibrio fischeri

    No full text

    Quantitative approaches to the study of bistability in the lac operon of Escherichia coli

    No full text
    In this paper, the history and importance of the lac operon in the development of molecular and systems biology are briefly reviewed. We start by presenting a description of the regulatory mechanisms in this operon, taking into account the most recent discoveries. Then we offer a survey of the history of the lac operon, including the discovery of its main elements and the subsequent influence on the development of molecular and systems biology. Next the bistable behaviour of the operon is discussed, both with respect to its discovery and its molecular origin. A review of the literature in which this bistable phenomenon has been studied from a mathematical modelling viewpoint is then given. We conclude with some brief remarks

    Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis

    No full text
    FtsH-mediated proteolysis against membrane proteins is processive, and presumably involves dislocation of the substrate into the cytosol where the enzymatic domains of FtsH reside. To study how such a mode of proteolysis is initiated, we manipulated N-terminal cytosolic tails of three membrane proteins. YccA, a natural substrate of FtsH was found to require the N-terminal tail of 20 amino acid residues or longer to be degraded by FtsH in vivo. Three unrelated sequences of this segment conferred the FtsH sensitivity to YccA. An artificially constructed TM9-PhoA protein, derived from SecY, as well as the SecE protein, were sensitized to FtsH by addition of extra amino acid sequences to their N-terminal cytosolic tails. Thus, FtsH recognizes a cytosolic region of sufficient length (∼20 amino acids) to initiate the processive proteolysis against membrane proteins. Such a region is typically at the N-terminus and can be diverse in amino acid sequences
    corecore