630 research outputs found
Optimal Locally Repairable and Secure Codes for Distributed Storage Systems
This paper aims to go beyond resilience into the study of security and
local-repairability for distributed storage systems (DSS). Security and
local-repairability are both important as features of an efficient storage
system, and this paper aims to understand the trade-offs between resilience,
security, and local-repairability in these systems. In particular, this paper
first investigates security in the presence of colluding eavesdroppers, where
eavesdroppers are assumed to work together in decoding stored information.
Second, the paper focuses on coding schemes that enable optimal local repairs.
It further brings these two concepts together, to develop locally repairable
coding schemes for DSS that are secure against eavesdroppers.
The main results of this paper include: a. An improved bound on the secrecy
capacity for minimum storage regenerating codes, b. secure coding schemes that
achieve the bound for some special cases, c. a new bound on minimum distance
for locally repairable codes, d. code construction for locally repairable codes
that attain the minimum distance bound, and e. repair-bandwidth-efficient
locally repairable codes with and without security constraints.Comment: Submitted to IEEE Transactions on Information Theor
Optimal Locally Repairable Codes via Rank-Metric Codes
This paper presents a new explicit construction for locally repairable codes
(LRCs) for distributed storage systems which possess all-symbols locality and
maximal possible minimum distance, or equivalently, can tolerate the maximal
number of node failures. This construction, based on maximum rank distance
(MRD) Gabidulin codes, provides new optimal vector and scalar LRCs. In
addition, the paper also discusses mechanisms by which codes obtained using
this construction can be used to construct LRCs with efficient repair of failed
nodes by combination of LRC with regenerating codes
Explicit MBR All-Symbol Locality Codes
Node failures are inevitable in distributed storage systems (DSS). To enable
efficient repair when faced with such failures, two main techniques are known:
Regenerating codes, i.e., codes that minimize the total repair bandwidth; and
codes with locality, which minimize the number of nodes participating in the
repair process. This paper focuses on regenerating codes with locality, using
pre-coding based on Gabidulin codes, and presents constructions that utilize
minimum bandwidth regenerating (MBR) local codes. The constructions achieve
maximum resilience (i.e., optimal minimum distance) and have maximum capacity
(i.e., maximum rate). Finally, the same pre-coding mechanism can be combined
with a subclass of fractional-repetition codes to enable maximum resilience and
repair-by-transfer simultaneously
Maxwell equations in matrix form, squaring procedure, separating the variables, and structure of electromagnetic solutions
The Riemann -- Silberstein -- Majorana -- Oppenheimer approach to the Maxwell
electrodynamics in vacuum is investigated within the matrix formalism. The
matrix form of electrodynamics includes three real 4 \times 4 matrices. Within
the squaring procedure we construct four formal solutions of the Maxwell
equations on the base of scalar Klein -- Fock -- Gordon solutions. The problem
of separating physical electromagnetic waves in the linear space
\lambda_{0}\Psi^{0}+\lambda_{1}\Psi^{1}+\lambda_{2}\Psi^{2}+ lambda_{3}\Psi^{3}
is investigated, several particular cases, plane waves and cylindrical waves,
are considered in detail.Comment: 26 pages 16 International Seminar NCPC, May 19-22, 2009, Minsk,
Belaru
Generalized Gravi-Electromagnetism
A self consistant and manifestly covariant theory for the dynamics of four
charges (masses) (namely electric, magnetic, gravitational, Heavisidian) has
been developed in simple, compact and consistent manner. Starting with an
invariant Lagrangian density and its quaternionic representation, we have
obtained the consistent field equation for the dynamics of four charges. It has
been shown that the present reformulation reproduces the dynamics of individual
charges (masses) in the absence of other charge (masses) as well as the
generalized theory of dyons (gravito - dyons) in the absence gravito - dyons
(dyons). key words: dyons, gravito - dyons, quaternion PACS NO: 14.80H
OWL-based acquisition and editing of computer-interpretable guidelines with the CompGuide editor
Computer-Interpretable Guidelines (CIGs) are the dominant medium for the delivery of clinical decision support, given the evidence-based nature of their source material. Therefore, these machine-readable versions have the ability to improve practitioner performance and conformance to standards, with availability at the point and time of care. The formalisation of Clinical Practice Guideline knowledge in a machine-readable format is a crucial task to make it suitable for the integration in Clinical Decision Support Systems. However, the current tools for this purpose reveal shortcomings with respect to their ease of use and the support offered during CIG acquisition and editing. In this work, we characterise the current landscape of CIG acquisition tools based on the properties of guideline visualisation, organisation, simplicity, automation, manipulation of knowledge elements, and guideline storage and dissemination. Additionally, we describe the CompGuide Editor, a tool for the acquisition of CIGs in the CompGuide model for Clinical Practice Guidelines that also allows the editing of previously encoded guidelines. The Editor guides the users throughout the process of guideline encoding and does not require proficiency in any programming language. The features of the CIG encoding process are revealed through a comparison with already established tools for CIG acquisition.COMPETE, Grant/Award Number: POCI-01-0145-FEDER-007043; FCT - Fundacao para a Ciencia e Tecnologia, Grant/Award Number: UID/CEC/00319/201
Quaternion Analysis for Generalized Electromagnetic Fields of Dyons in Isotropic Medium
Quaternion analysis of time dependent Maxwell's equations in presence of
electric and magnetic charges has been developed and the solutions for the
classical problem of moving charges (electric and magnetic) are obtained in
unique, simple and consistent manner
On finite monoids of cellular automata.
For any group G and set A, a cellular automaton over G and A is a transformation τ:AG→AGτ:AG→AG defined via a finite neighbourhood S⊆GS⊆G (called a memory set of ττ) and a local function μ:AS→Aμ:AS→A. In this paper, we assume that G and A are both finite and study various algebraic properties of the finite monoid CA(G,A)CA(G,A) consisting of all cellular automata over G and A. Let ICA(G;A)ICA(G;A) be the group of invertible cellular automata over G and A. In the first part, using information on the conjugacy classes of subgroups of G, we give a detailed description of the structure of ICA(G;A)ICA(G;A) in terms of direct and wreath products. In the second part, we study generating sets of CA(G;A)CA(G;A). In particular, we prove that CA(G,A)CA(G,A) cannot be generated by cellular automata with small memory set, and, when G is finite abelian, we determine the minimal size of a set V⊆CA(G;A)V⊆CA(G;A) such that CA(G;A)=⟨ICA(G;A)∪V⟩CA(G;A)=⟨ICA(G;A)∪V⟩
HIV-1 integrase polymorphisms are associated with prior antiretroviral drug exposure
In a recent summary of integrase sequences, primary integrase inhibitor mutations were rare. In a review of integrase inhibitor-naïve Australian HIV-1 sequences, primary mutations were not identified, although the accessory mutation G140S was detected. A link with previous antiretroviral therapy, intra-subtype B divergence across the integrase gene and transmission of integrase polymorphisms were also noted. Based on these findings, we would recommend ongoing surveillance of integrase mutations, and integrase region sequencing for patients prior to commencement of integrase inhibitors
- …