4 research outputs found

    First-Principles Magnetic Treatment of the Uranium Nitride (100) Surface and Effect on Corrosion Initiation

    No full text
    The magnetic properties of uranium nitride (UN) surfaces are not well understood experimentally or computationally but they have a significant effect on UN performance as a nuclear fuel. We investigated ferromagnetic (FM), antiferromagnetic (AFM), nonmagnetic (NM), and three hybrid magnetic structures of the most stable UN surface (100). To account for electron correlation and metastability, a U-ramp was performed to an effective Hubbard U-term of 2.0 eV. FM was found to be the most energetically favorable magnetic structure. Type 1 AFM slab was optimized to a new magnetic structure consisting of (100) planes with either all spin-up electrons, all spin-down electrons, or half spin-up and half spin-down electrons on uranium atoms. After OH adsorption to simulate corrosion initiation, the AFM, FM, and NM structures yield relatively similar bond lengths but varying bond angles, adsorption energies, and electronic profiles. Partial charge density maps show varying degradation mechanisms across magnetic structures. Electron localization function reveals more charge localized to AFM uranium atoms with spin-down electrons than uranium atoms with spin-up electrons. This leads to different properties depending on if an adsorbate interacts with a spin-up or spin-down terminated AFM surface. This work supports the physical accuracy of future computational studies toward corroborating with experiments and addressing UN fuel corrosion

    Combined Experimental and Computational Study of Molybdenum and Niobium for Nuclear Sensor Application

    No full text
    Due to their novel electromagnetic and thermal properties, molybdenum (Mo) and niobium (Nb) become optimal temperature sensor materials for nuclear energy applications. We leveraged voltage recorded during a heat ramp to tune a computational method to predict the Seebeck electromotive force (EMF) of Mo and Nb. Using a combined Density Functional Theory (DFT) and Boltzmann Transport Equations (BTE) method the voltage was predicted but did not include the effects of temperature on atomic structure. Combining Ab Initio Molecular Dynamics (AIMD) and BTE included temperature effects on structure optimization and yielded voltages in a good agreement with experiment. Lanthanum (La) and Phosphorus (P) additives in Mo and Nb, respectively, could increase the EMF compared to those of the pure metals. The presence of oxygen (O) in Mo increases the EMF while O in Nb slightly reduces the EMF. Our studies suggested that heat treatment-induced structural changes that lead to a reduction in voltage occur not only at the mesoscale as previously understood but also at the atomic scale

    Computational Studies of Amorphous UO2 for Grain Boundary Behavior

    No full text
    Fission products at the point of contact between the pellet and the cladding contribute to the ultimate failure of the cladding through stress corrosion cracking (SCC). Gaseous fission products navigate along the grain boundaries after formation and eventually reach the plenum. To better understand fission product behavior at fuel grain boundaries, we generated random amorphous UO2 structures, as highly disordered grain boundaries exhibit the fastest kinetic properties. These structures were then optimized using ab initio methods and the most stable structure was selected for defect calculations. We have compared the atomic structure of UO2 structures with and without antiferromagnetism and calculated the incorporation energies of I, Te, and Xe in the grain boundaries of UO2. Each of the studied fission products favored the O-poor boundary. The grain boundary itself showed changes in lattice parameter lengths and angles after both vacancy formation and fission product incorporation

    First-Principles Comparative Study of UN and Zr Corrosion

    No full text
    We studied surface corrosion effects on Zr and UN using first-principles density functional theory-based calculations. We focused on the energetics of Zr (1000), UN (100) and UN (110) surfaces, exposed to water and oxygen. Average distance between the terminating UN (100) surface and bulk increases due to the presence of additional oxygen content, as well as for the (110) surface. The average distance between the surface layer and bulk is greater in the (110) surface than the (100) surface after water adsorption. Oxygen concentration determines whether H2 or oxynitrde is formed on the (110) surface. Local density of states and partial charge density show the bonding between the UN surfaces and adsorbates. From an electronic energy of −2 eV to the Fermi level, the majority of electrons are found to be localized around U atoms. Electron localization function calculations further reveal the corrosion mechanism details
    corecore