118 research outputs found
Extragalactic jets on subpc and large scales
Jets can be probed in their innermost regions (d~0.1 pc) through the study of
the relativistically-boosted emission of blazars. On the other extreme of
spatial scales, the study of structure and dynamics of extragalactic
relativistic jets received renewed impulse after the discovery, made by
Chandra, of bright X-ray emission from regions at distances larger than
hundreds of kpc from the central engine. At both scales it is thus possible to
infer some of the basic parameters of the flow (speed, density, magnetic field
intensity, power). After a brief review of the available observational
evidence, I discuss how the comparison between the physical quantities
independently derived at the two scales can be used to shed light on the global
dynamics of the jet, from the innermost regions to the hundreds of kpc scale.Comment: Proceedings of the 5th Stromlo Symposium: Disks, Winds, and Jets -
from Planets to Quasars. Accepted, to be published in Astrophysics & Space
Scienc
Compact jets as probes for sub-parsec scale regions in AGN
Compact relativistic jets in active galactic nuclei offer an effective tool
for investigating the physics of nuclear regions in galaxies. The emission
properties, dynamics, and evolution of jets in AGN are closely connected to the
characteristics of the central supermassive black hole, accretion disk and
broad-line region in active galaxies. Recent results from studies of the
nuclear regions in several active galaxies with prominent outflows are reviewed
in this contribution.Comment: AASLaTeX, 5 pages, 4 figures. Accepted in Astrophysics and Space
Scienc
Theoretical overview on high-energy emission in microquasars
Microquasar (MQ) jets are sites of particle acceleration and synchrotron
emission. Such synchrotron radiation has been detected coming from jet regions
of different spatial scales, which for the instruments at work nowadays appear
as compact radio cores, slightly resolved radio jets, or (very) extended
structures. Because of the presence of relativistic particles and dense photon,
magnetic and matter fields, these outflows are also the best candidates to
generate the very high-energy (VHE) gamma-rays detected coming from two of
these objects, LS 5039 and LS I +61 303, and may be contributing significantly
to the X-rays emitted from the MQ core. In addition, beside electromagnetic
radiation, jets at different scales are producing some amount of leptonic and
hadronic cosmic rays (CR), and evidences of neutrino production in these
objects may be eventually found. In this work, we review on the different
physical processes that may be at work in or related to MQ jets. The jet
regions capable to produce significant amounts of emission at different
wavelengths have been reduced to the jet base, the jet at scales of the order
of the size of the system orbital semi-major axis, the jet middle scales (the
resolved radio jets), and the jet termination point. The surroundings of the
jet could be sites of multiwavelegnth emission as well, deserving also an
insight. We focus on those scenarios, either hadronic or leptonic, in which it
seems more plausible to generate both photons from radio to VHE and high-energy
neutrinos. We briefly comment as well on the relevance of MQ as possible
contributors to the galactic CR in the GeV-PeV range.Comment: Astrophysics & Space Science, in press (invited talk in the
conference: The multimessenger approach to the high-energy gamma-ray
sources", Barcelona/Catalonia, in July 4-7); 10 pages, 6 figures, 2 tables
(one reference corrected
A self-interaction corrected pseudopotential scheme for magnetic and strongly-correlated systems
Local-spin-density functional calculations may be affected by severe errors
when applied to the study of magnetic and strongly-correlated materials. Some
of these faults can be traced back to the presence of the spurious
self-interaction in the density functional. Since the application of a fully
self-consistent self-interaction correction is highly demanding even for
moderately large systems, we pursue a strategy of approximating the
self-interaction corrected potential with a non-local, pseudopotential-like
projector, first generated within the isolated atom and then updated during the
self-consistent cycle in the crystal. This scheme, whose implementation is
totally uncomplicated and particularly suited for the pseudopotental formalism,
dramatically improves the LSDA results for a variety of compounds with a
minimal increase of computing cost.Comment: 18 pages, 14 figure
Measuring Black Hole Spin using X-ray Reflection Spectroscopy
I review the current status of X-ray reflection (a.k.a. broad iron line)
based black hole spin measurements. This is a powerful technique that allows us
to measure robust black hole spins across the mass range, from the stellar-mass
black holes in X-ray binaries to the supermassive black holes in active
galactic nuclei. After describing the basic assumptions of this approach, I lay
out the detailed methodology focusing on "best practices" that have been found
necessary to obtain robust results. Reflecting my own biases, this review is
slanted towards a discussion of supermassive black hole (SMBH) spin in active
galactic nuclei (AGN). Pulling together all of the available XMM-Newton and
Suzaku results from the literature that satisfy objective quality control
criteria, it is clear that a large fraction of SMBHs are rapidly-spinning,
although there are tentative hints of a more slowly spinning population at high
(M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of
the spins of stellar-mass black holes in X-ray binaries. In general,
reflection-based and continuum-fitting based spin measures are in agreement,
although there remain two objects (GROJ1655-40 and 4U1543-475) for which that
is not true. I end this review by discussing the exciting frontier of
relativistic reverberation, particularly the discovery of broad iron line
reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and
MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk
reflection, this detection of reverberation demonstrates that future large-area
X-ray observatories such as LOFT will make tremendous progress in studies of
strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The
Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds
a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the
referencing of the discovery of soft lags in 1H0707-495 (which were in fact
first reported in Fabian et al. 2009
Theory of magnetically powered jets
The magnetic theory for the production of jets by accreting objects is
reviewed with emphasis on outstanding problem areas. An effort is made to show
the connections behind the occasionally diverging nomenclature in the
literature, to contrast the different points of view about basic mechanisms,
and to highlight concepts for interpreting the results of numerical
simulations. The role of dissipation of magnetic energy in accelerating the
flow is discussed, and its importance for explaining high Lorentz factors. The
collimation of jets to the observed narrow angles is discussed, including a
critical discussion of the role of `hoop stress'. The transition between disk
and outflow is one of the least understood parts of the magnetic theory; its
role in setting the mass flux in the wind, in possible modulations of the mass
flux, and the uncertainties in treating it realistically are discussed. Current
views on most of these problems are still strongly influenced by the
restriction to 2 dimensions (axisymmetry) in previous analytical and numerical
work; 3-D effects likely to be important are suggested. An interesting problem
area is the nature and origin of the strong, preferably highly ordered magnetic
fields known to work best for jet production. The observational evidence for
such fields and their behavior in numerical simulations is discussed. I argue
that the presence or absence of such fields may well be the `second parameter'
governing not only the presence of jets but also the X-ray spectra and timing
behavior of X-ray binaries.Comment: 29 pages. Publication delays offered the opportunity for further
corrections, an expansion of sect 4.2, and one more Fig. To appear in
Belloni, T. (ed.): The Jet Paradigm - From Microquasars to Quasars, Lect.
Notes Phys. 794 (2009
Recommended from our members
The Structure and Emission Model of the Relativistic Jet in the Quasar 3C 279 Inferred from Radio to High-energy Gamma-ray Observations in 2008-2010
The structure and emission model of the relativistic jet in the quasar 3C279 inferred from radio to high-energy γ-ray observations in 2008-2010
We present time-resolved broadband observations of the quasar 3C279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported γ-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears to be delayed with respect to the γ-ray emission by about 10days. X-ray observations reveal a pair of "isolated" flares separated by 90 days, with only weak γ-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the γ-ray flare, while the peak appears in the millimeter (mm)/submillimeter (sub-mm) band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broadband spectra during the γ-ray flaring event by a shift of its location from 1pc to 4pc from the central black hole. On the other hand, if the γ-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission. © 2012. The American Astronomical Society. All rights reserved.
Multi-wavelength observations of blazar AO 0235+164 in the 2008-2009 flaring state
The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to γ-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the γ-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus. © 2012. The American Astronomical Society. All rights reserved
- …