9 research outputs found

    eTPL: An Enhanced Version of the TLS Presentation Language Suitable for Automated Parser Generation

    No full text
    The specification of the Transport Layer Security (TLS) protocol defines its own presentation language used for the purpose of semi-formally describing the structure and on-the-wire format of TLS protocol messages. This TLS Presentation Language (TPL) is more expressive and concise than natural language or tabular descriptions, but as a result of its limited objective has a number of deficiencies. We present eTPL, an enhanced version of TPL that improves its expressiveness, flexibility, and applicability to non-TLS scenarios. We first define a generic model that describes the parsing of binary data. Based on this, we propose language constructs for TPL that capture important information which would otherwise have to be picked manually from informal protocol descriptions. Finally, we briefly introduce our software tool etpl-tool which reads eTPL definitions and automatically generates corresponding message parsers in C++. We see our work as a contribution supporting sniffing, debugging, and rapid-prototyping of wired and wireless communication systems

    Legacy to Industry 4.0: A Profibus Sniffer

    No full text
    Legacy industrial communication protocols are proved robust and functional. During the last decades, the industry has invented completely new or advanced versions of the legacy communication solutions. However, even with the high adoption rate of these new solutions, still the majority industry applications run on legacy, mostly fieldbus related technologies. Profibus is one of those technologies that still keep on growing in the market, albeit a slow in market growth in recent years. A retrofit technology that would enable these technologies to connect to the Internet of Things, utilize the ever growing potential of data analysis, predictive maintenance or cloud-based application, while at the same time not changing a running system is fundamental

    Entwicklung eines DGPS-gestützten Fahrdynamikmesssystems unter Verwendung des FPGAs Zynq-7000 mit einem Dual-Core Bare-Metal asymmetrischen Multiprozessorsystem

    No full text
    Die neueste Generation von programmierbaren Logikbausteinen verfügt neben den konfigurierbaren Logikzellen über einen oder mehrere leistungsfähige Mikroprozessoren. In dieser Arbeit wird gezeigt, wie ein bestehendes Zwei-Chip-System auf einen Xilinx Zynq 7000 mit zwei ARM A9-Cores migriert wird. Bei dem System handelt es sich um das „GPS-gestützte Kreisel-system ADMA“ des Unternehmens GeneSys. Die neue Lösung verbessert den Datenaustausch zwischen dem ersten Mikroprozessor zur digitalen Signalverarbeitung und dem zweiten Prozessor zur Ablaufsteuerung durch ein Shared Memory. Für die schnelle und echtzeitfähige Datenübertragung werden zahlreiche hochbitratige Schnittstellengenutzt

    A Novel Virtualized Testbed for Embedded Networking Nodes (VTENN)

    No full text
    A novel approach of a testbed for embedded networking nodes has been conceptualized and implemented. It is based on the use of virtual nodes in a PC environment, where each node executes the original embedded code. Different nodes are running in parallel and are connected via so-called virtual interfaces. The presented approach is very efficient and allows a simple description of test cases without the need of a network simulator. Furthermore, it speeds up the process of developing new features

    Dynamic mapping of EDDL device descriptions to OPC UA

    No full text
    OPC UA (Open Platform Communications Unified Architecture) is already a well-known concept used widely in the automation industry. In the area of factory automation, OPC UA models the underlying field devices such as sensors and actuators in an OPC UA server to allow connecting OPC UA clients to access device-specific information via a standardized information model. One of the requirements of the OPC UA server to represent field device data using its information model is to have advanced knowledge about the properties of the field devices in the form of device descriptions. The international standard IEC 61804 specifies EDDL (Electronic Device Description Language) as a generic language for describing the properties of field devices. In this paper, the authors describe a possibility to dynamically map and integrate field device descriptions based on EDDL into OPCUA

    Wireless Precision Time Protocol

    No full text
    The IEEE 1588 precision time protocol (PTP) is a time synchronization protocol with sub-microsecond precision primarily designed for wired networks. In this letter, we propose wireless precision time protocol (WPTP) as an extension to PTP for multi-hop wireless networks. WPTP significantly reduces the convergence time and the number of packets required for synchronization without compromising on the synchronization accuracy

    Energy Efficient Sensor Network Routing (EESNR) Protocol For Large Distributed Environmental Monitoring Applications

    No full text
    Due to climate change and scarcity of water reservoirs, monitoring and control of irrigation systems is now becoming a major focal area for researchers in Cyber-Physical Systems (CPS). Wireless Sensor Networks (WSNs) are rapidly finding their way in the field of irrigation and play the key role as data gathering technology in the domain of IoT and CPS. They are efficient for reliable monitoring, giving farmers an edge to take precautionary measures. However, designing an energy-efficient WSN system requires a cross-layer effort and energy-aware routing protocols play a vital role in the overall energy optimization of a WSN. In this paper, we propose a new hierarchical routing protocol suitable for large area environmental monitoring such as large-scale irrigation network existing in the Punjab province of Pakistan. The proposed protocol resolves the issues faced by traditional multi-hop routing protocols such as LEACH, M-LEACH and I-LEACH, and enhances the lifespan of each WSN node that results in an increased lifespan of the whole network. We used the open-source NS3 simulator for simulation purposes and results indicate that our proposed modifications result in an average 27.8% increase in lifespan of the overall WSN when compared to the existing protocols

    Hardware and Software Architecture of Multi MEMS Sensor Inertial Module

    No full text
    The paper describes the hardware and software architecture of the developed multi MEMS sensor prototype module, consisting of ARM Cortex M4 STM32F446 microcontroller unit, five 9-axis inertial measurement units MPU9255 (3D accelerometer, 3D gyroscope, 3D magnetometer and temperature sensor) and a BMP280 barometer. The module is also equipped with WiFi wireless interface (Espressif ESP8266 chip). The module is constructed in the form of a truncated pyramid. Inertial sensors are mounted on a special basement at different angles to each other to eliminate hardware sensors drifts and to provide the capability for self-calibration. The module fuses information obtained from all types of inertial sensors (acceleration, rotation rate, magnetic field and air pressure) in order to calculate orientation and trajectory. It might be used as an Inertial Measurement Unit, Vertical Reference Unit or Attitude and Heading Reference System

    Performance Evaluation of IEEE 802.15.4-Compliant Smart Water Meters for Automating Large-Scale Waterways

    No full text
    Climate change and resultant scarcity of water are becoming major challenges for countries around the world. With the advent of Wireless Sensor Networks (WSN) in the last decade and a relatively new concept of Internet of Things (IoT), embedded systems developers are now working on designing control and automation systems that are lower in cost and more sustainable than the existing telemetry systems for monitoring. The Indus river basin in Pakistan has one of the world's largest irrigation systems and it is extremely challenging to design a low-cost embedded system for monitoring and control of waterways that can last for decades. In this paper, we present a hardware design and performance evaluation of a smart water metering solution that is IEEE 802.15.4-compliant. The results show that our hardware design is as powerful as the reference design, but allows for additional flexibility both in hardware and in firmware. The indigenously designed solution has a power added efficiency (PAE) of 24.7% that is expected to last for 351 and 814 days for nodes with and without a power amplifier (PA). Similarly, the results show that a broadband communication (434 MHz) over more than 3km can be supported, which is an important stepping stone for designing a complete coverage solution of large-scale waterways
    corecore