143 research outputs found

    Fine structures of solar radio type III bursts and their possible relationship with coronal density turbulence

    Get PDF
    Solar radio type III bursts are believed to be the most sensitive signatures of near-relativistic electron beam propagation in the corona. A solar radio type IIIb-III pair burst with fine frequency structures, observed by the Low Frequency Array (LOFAR) with high temporal (~10 ms) and spectral (12.5 kHz) resolutions at 30–80 MHz, is presented. The observations show that the type III burst consists of many striae, which have a frequency scale of about 0.1 MHz in both the fundamental (plasma) and the harmonic (double plasma) emission. We investigate the effects of background density fluctuations based on the observation of striae structure to estimate the density perturbation in the solar corona. It is found that the spectral index of the density fluctuation spectrum is about −1.7, and the characteristic spatial scale of the density perturbation is around 700 km. This spectral index is very close to a Kolmogorov turbulence spectral index of −5/3, consistent with a turbulent cascade. This fact indicates that the coronal turbulence may play the important role of modulating the time structures of solar radio type III bursts, and the fine structure of radio type III bursts could provide a useful and unique tool to diagnose the turbulence in the solar corona

    Effect of a sausage oscillation on radio zebra pattern structures in a solar flare

    Get PDF
    Sausage modes that are axisymmetric fast magnetoacoustic oscillations of solar coronal loops are characterized by variation of the plasma density and magnetic field, and hence cause time variations of the electron plasma frequency and cyclotron frequency. The latter parameters determine the condition for the double plasma resonance (DPR), which is responsible for the appearance of zebra-pattern (ZP) structures in time spectra of solar type IV radio bursts. We perform numerical simulations of standing and propagating sausage oscillations in a coronal loop modeled as a straight, field-aligned plasma slab, and determine the time variation of the DPR layer locations. Instant values of the plasma density and magnetic field at the DPR layers allowed us to construct skeletons of the time variation of ZP stripes in radio spectra. In the presence of a sausage oscillation, the ZP structures are shown to have characteristic wiggles with the time period prescribed by the sausage oscillation. Standing and propagating sausage oscillations are found to have different signatures in ZP patterns. We conclude that ZP wiggles can be used for the detection of short-period sausage oscillations and the exploitation of their seismological potential
    • …
    corecore