41 research outputs found

    On the Energy-Efficiency Trade-off Between Active and Passive Communications with RIS-based Symbiotic Radio

    Full text link
    Symbiotic radio (SR) is a promising technology of spectrum- and energy-efficient wireless systems, for which the key idea is to use cognitive backscattering communication to achieve mutualistic spectrum and energy sharing with passive backscatter devices (BDs). In this paper, a reconfigurable intelligent surface (RIS) based SR system is considered, where the RIS is used not only to assist the primary active communication, but also for passive communication to transmit its own information. For the considered system, we investigate the EE trade-off between active and passive communications, by characterizing the EE region. To gain some insights, we first derive the maximum achievable individual EEs of the primary transmitter (PT) and RIS, respectively, and then analyze the asymptotic performance by exploiting the channel hardening effect. To characterize the non-trivial EE trade-off, we formulate an optimization problem to find the Pareto boundary of the EE region by jointly optimizing the transmit beamforming, power allocation and the passive beamforming of RIS. The formulated problem is non-convex, and an efficient algorithm is proposed by decomposing it into a series of subproblems by using alternating optimization (AO) and successive convex approximation (SCA) techniques. Finally, simulation results are presented to validate the effectiveness of the proposed algorithm

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A Study on Transportation Carbon Emissions Based on the IPCC Method: a Case Study of Chongqing City

    Get PDF
    The carbon emissions from transportation have an undeniable impact on global climate change. This article focuses on the central urban area of Chongqing City as the research area and uses IPCC's reference method to calculate the carbon emissions from transportation in Chongqing from 2016 to 2020. The study estimated the carbon emissions from transportation vehicles in terms of fossil fuels and electricity, and analyzed the relationship between the carbon emissions of transportation vehicles powered by fossil fuels and electricity respectively. The study found that the carbon emissions from transportation in Chongqing increased during the study period, with gasoline and diesel vehicles accounting for the majority of emissions. In addition, this article also analyzed the role of promoting electric vehicles and achieving electrified transportation in reducing carbon emissions from transportation vehicles, which was found to be an effective way. Therefore, this article suggests that efforts should be made to promote and develop electric vehicles, while encouraging and promoting the achievement of electrified transportation to achieve the goal of reducing carbon emissions from transportation vehicles

    Regularized Gradient Descent Ascent for Two-Player Zero-Sum Markov Games

    Full text link
    We study the problem of finding the Nash equilibrium in a two-player zero-sum Markov game. Due to its formulation as a minimax optimization program, a natural approach to solve the problem is to perform gradient descent/ascent with respect to each player in an alternating fashion. However, due to the non-convexity/non-concavity of the underlying objective function, theoretical understandings of this method are limited. In our paper, we consider solving an entropy-regularized variant of the Markov game. The regularization introduces structure into the optimization landscape that make the solutions more identifiable and allow the problem to be solved more efficiently. Our main contribution is to show that under proper choices of the regularization parameter, the gradient descent ascent algorithm converges to the Nash equilibrium of the original unregularized problem. We explicitly characterize the finite-time performance of the last iterate of our algorithm, which vastly improves over the existing convergence bound of the gradient descent ascent algorithm without regularization. Finally, we complement the analysis with numerical simulations that illustrate the accelerated convergence of the algorithm

    An approach for medical event detection in Chinese clinical notes of electronic health records

    No full text
    Abstract Background Medical event detection in narrative clinical notes of electronic health records (EHRs) is a task designed for reading text and extracting information. Most of the previous work of medical event detection treats the task as extracting concepts at word granularity, which omits the overall structural information of the clinical notes. In this work, we treat each clinical note as a sequence of short sentences and propose an end-to-end deep neural network framework. Methods We redefined the task as a sequence labelling task at short sentence granularity, and proposed a novel tag system correspondingly. The dataset were derived from a third-level grade-A hospital, consisting of 2000 annotated clinical notes according to our proposed tag system. The proposed end-to-end deep neural network framework consists of a feature extractor and a sequence labeller, and we explored different implementations respectively. We additionally proposed a smoothed Viterbi decoder as sequence labeller without additional parameter training, which can be a good alternative to conditional random field (CRF) when computing resources are limited. Results Our sequence labelling models were compared to four baselines which treat the task as text classification of short sentences. Experimental results showed that our approach significantly outperforms the baselines. The best result was obtained by using the convolutional neural networks (CNNs) feature extractor and the sequential CRF sequence labeller, achieving an accuracy of 92.6%. Our proposed smoothed Viterbi decoder achieved a comparable accuracy of 90.07% with reduced training parameters, and brought more balanced performance across all categories, which means better generalization ability. Conclusions Evaluated on our annotated dataset, the comparison results demonstrated the effectiveness of our approach for medical event detection in Chinese clinical notes of EHRs. The best feature extractor is the CNNs feature extractor, and the best sequence labeller is the sequential CRF decoder. And it was empirically verified that our proposed smoothed Viterbi decoder could bring better generalization ability while achieving comparable performance to the sequential CRF decoder

    Sequential Fair Resource Allocation under a Markov Decision Process Framework

    Full text link
    We study the sequential decision-making problem of allocating a limited resource to agents that reveal their stochastic demands on arrival over a finite horizon. Our goal is to design fair allocation algorithms that exhaust the available resource budget. This is challenging in sequential settings where information on future demands is not available at the time of decision-making. We formulate the problem as a discrete time Markov decision process (MDP). We propose a new algorithm, SAFFE, that makes fair allocations with respect to the entire demands revealed over the horizon by accounting for expected future demands at each arrival time. The algorithm introduces regularization which enables the prioritization of current revealed demands over future potential demands depending on the uncertainty in agents' future demands. Using the MDP formulation, we show that SAFFE optimizes allocations based on an upper bound on the Nash Social Welfare fairness objective, and we bound its gap to optimality with the use of concentration bounds on total future demands. Using synthetic and real data, we compare the performance of SAFFE against existing approaches and a reinforcement learning policy trained on the MDP. We show that SAFFE leads to more fair and efficient allocations and achieves close-to-optimal performance in settings with dense arrivals
    corecore